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Executive Summary

CrowdEmotion produce software to measure a person’s emotions based
on analysis of microfacial expressions detected using a webcam. The
technology relies on a machine learning algorithm to recognize which
features correspond with which emotions; it is trained on a labelled
dataset. The features are derived by applying a bank of Gabor filters
to a set of frames, determining the Local Binary Pattern (LBP) of each
resulting pixel, and then averaging the results over three orthogonal
planes (TOP), as outlined in [1]. CrowdEmotion challenged the study
group to improve the accuracy, processing speed and cost-efficiency of
the tool. In particular they wanted to know if a subset of the bank of
Gabor filters was sufficient, and whether the image filtering stage could
be implemented on a GPU. A framework for choosing the optimum
set of Gabor filters was established, and preliminary testing performed.
Different ways of implementing Gabor filters were explored. Some ele-
ments of the feature set give little information, thus ways of reducing
the dimensionality of this were interrogated. Some steps in the proce-
dure outlined in [1] seemed ad-hoc, in particular when taking a subset of
LBPs and choosing a gridding pattern to perform the TOP step. Taking
a subset of LBPs was found to be fully justified. Meanwhile choosing
a gridding pattern is open to interpretation; we make some suggestions
on how this choice might be improved. A short review of alternatives
to using a SVM as a classifier is presented.

Version 1.0
May 18, 2014
iii+23 pages

i



ESGI100: Gabor Filter Selection and Computational Processing for Emotion

Recognition ESGI100

Report author

Erhan Coskun (Karadeniz Technical University)
Torran Elson (Smith Institute)

Sean Lim (University of Oxford)
James Mathews (University of Cambridge)

Gruff Morris (Lancaster University)
Nikolai Nowaczyk (Universität Regensburg)
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1 Introduction

1.1 Background

(1.1) The science of facial expression coding dates back to the 1970s and the
research of psychologist Paul Ekman, who established the first taxonomy
of universal human facial expressions and their corresponding emotions. In
recent years, advances in computer vision have enabled the automation of
facial expression coding, which has opened up new application areas for
research and commercial purposes. CrowdEmotion, a technology company
based in London, have developed a cloud-based platform for automated
facial expression coding. The system processes videos of human faces and
labels sequences of frames according to the detected facial action units (mus-
cle contractions) and corresponding emotional states. Action unit and emo-
tion libraries are trained on sets of labelled face videos, enabling ongoing
refinement of the tool.

(1.2) CrowdEmotion use a technique based on Local Gabor Binary Patterns from
Three Orthogonal Planes (LGBPTOP) [1] to process video frames. In brief,
facial features and actions (features in time) cause local appearance changes
over time and dynamic texture descriptors are used for detection.

1.2 Problem Statement

(1.3) Numerous opportunities exist to improve the current implementation of the
procedure that CrowdEmotion use. Immediate challenges are:

1. LGBPTOP has shown strong performance compared with other meth-
ods of similar computational cost [1]. Certain aspects of the method
are quite ad-hoc, however, indicating that there is room for improve-
ment. Therefore a sound understanding of the method should be at-
tained in order to suggest further areas of accuracy improvement.

2. Gabor Filter Selection: Identifying which Gabor filters perform better
than others and to what degree. This would allow CrowdEmotion to
eliminate filters with a low contribution to the overall accuracy and
therefore improve performance. A key aim would be to enable smart
feature selection by identifying an optimal subset of Gabor filters.
Requirements for study:

• Annotated data: In order to perform a proper study on Gabor
filters (DISFA [2] and GEMEP-FERA databases [3]).

• Machine learning accuracy: Alternative Force Choice (area under
ROC curve approximation) has previously been used to estimate
accuracy therefore in order to make a valid comparison it is likely
this method should be used as part of the study. This methodology
is discussed further in [1].

• A relevant tutorial on Gabor wavelets is given in [4].
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3. Parallel Computing: Design an algorithm intended to be executed on
a massively parallelised computing device (i.e. GPU) based on the
Gabor filters theory given in [1]. The aim in this case would be to
achieve the maximum processing speed increase in comparison to the
existing CPU-based implementation.
Requirements for study:

• Current Implementation: Access to the source code repository will
be provided

• Programming Tools: C++, NVIDIA CUDA toolkit

1.3 Objectives

(1.4) As discussed above, there are opportunities to make processing more effi-
cient lending three benefits to the final product:

1. Accuracy: Improvement of the algorithm to include selection of ap-
propriate predictive features.

2. End-User Processing Speed: Any improvement in turn-around time
is attractive to end-users; while the ability to process in realtime will
open up opportunities for new applications capable of measuring and
responding to user expressions.

3. Processing / Cost Efficiency: Deploying this solution at scale as a
cloud-based service will involve processing extensive hours of video for
large numbers of users. Increasing the computational efficiency of this
will therefore reduce costs associated with rented computational ca-
pacity. Significant efficiency improvements may also enable processing
on mobile hardware.

1.4 Overview

(1.5) As described above, the system employed by CrowdEmotion closely follows
[1]. Below we will briefly outline, at a high level, the process followed
by CrowdEmotion, dip into some of the detail to prepare the way for later
sections and then outline the approaches made to the problem. An overview
of the process is shown in Figure 1.

(1.6) Facial movements may be classified using the Facial Action Coding System
(FACS). This was originally developed by Swedish anatomist Hjortsjö [5]
and refined by Ekman, Friesen, and Hager [6]. The latter work details
how basic combinations of facial movements (called Action Units, AUs) can
be interpreted as corresponding to certain emotional states. For instance,
a combination of AU6 (cheek raiser) and AU12 (lip corner puller), would
indicate happiness. Hence if AUs can be accurately identified by CrowdE-
motion’s classifier, the emotional state of the individual can be inferred.
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Image

Gabor Filter

LBP

TOP

Histogram Concatenation

Dimension Reduction

SVM

Feature Contribution

18

59

3

4× 4

50,976 features in total

Figure 1: Overview of the steps taken in CrowdEmotion’s classification scheme.
The number of features is tallied up on the right-hand side.

(1.7) AUs are the activation or relaxation of facial muscles. On an image these
can be recognized as edges. CrowdEmotion’s process aims to take a set of
images of a subject, identify the edges in the pictures and then classify the
edge information.

(1.8) To do this, CrowdEmotion take a video and split it into batches of five
frames. When analysing a whole video offline, one batch and the next
overlap by four frames; when the software is used in real-time the next
batch analysed is taken once the first batch has been processed. In real-time
mode, the sequences of five frames are selected from the webcam feed when
the previous set have finished processing and therefore many sequences are
skipped unless the process is carried out on sufficiently powerful hardware.

(1.9) A bank of 18 Gabor filters is applied to each frame of the video. Gabor
filters tend to be effective at identifying edges and characterising textures.
They consist of a Gaussian envelope and a sinusoid; the type of filter applied
by CrowdEmotion takes the following form:

G(x, y) = exp (πσ2((x− x0)2r + (y − y0)2r))
· exp (2πıφ((x− x0)r + (y − y0)r) + P ) (1)

where

(x− x0)r = (x− x0) cos θ + (y − y0) sin θ

(y − y0)r = −(x− x0) sin θ + (y − y0) cos θ

(1.10) x0 and y0 are some coordinate points, θ is a spacial angle, and φ is a spacial
frequency. P is a phase term. Since we are interested in the absolute
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Figure 2: How we compute the LBP patterns. Picture from [1]

values of the output of the filter, the phase term can be disregarded. Note
that the formulation in (1) differs from that in [1]. We think this is a
transcription error in the paper. The 18 Gabor filters are chosen in [1] by
taking combinations of six spacial angles and three spacial frequencies:

φ ∈
{
π
2
, π
4
, π
8

}
Frequencies

θ ∈
{
kπ
6
| k = 0, . . . , 5

}
Angles

(1.11) Sections 2.1 and 2.2 explore whether all 18 Gabor filters are necessary and
suggests methods to determine an optimum subset. Section 2.3 gives a
detailed mathematical description of how Gabor filters are implemented.

(1.12) Applying the Gabor filter mathematically amounts to taking the convolution
of an image (function) and the filter (a Gabor impulse response). Since we
are dealing with digital images this process is performed discretely. How
this convolution might be better implemented is dealt with in Section 2.4.

(1.13) Each frame is convolved with the 18 Gabor filters. This leads to 18 Ga-
bor Pictures (GPs) arising. A Local Binary Pattern (LBP) is determined
for every pixel in each picture. A LBP is determined by comparing the
(grayscale) value of the pixel with its eight neighbours. If the (grayscale)
value of its neighbour is equal to or larger than the pixel’s value it is labelled
with a 1, otherwise it is labelled with a 0. Starting from the pixel to the
left, these values are concatenated into an eight digit binary number. This
is the LBP for that pixel. The process is shown in Figure 2. There are
28 = 256 possible combinations. However it turns out that only 59 of them
are significant. Why only 59 of them are significant is dealt with in Section
2.6. Overall this gives us the Local Gabor Binary Patterns (LGBP).

(1.14) The next step in the process is to take Three Orthogonal Planes (TOP)
through the data. A batch of five frames, where the same Gabor filter has
been applied to each, is taken. The three orthogonal planes are the xy, xt
and yt slices. Currently these planes are split into 4 × 4 grids. For each
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grid cell the occurance of each LBP is counted and then averaged over the
third dimension (the one not in the slice). So for the xy slice, the count of
LBPs in each element of the 4×4 grid is taken per frame. Then the count is
averaged over the five frames. Sections 2.7 and 2.8 explore why a 4× 4 grid
is taken and discusses possible improvements that might be made to this
choice. Combining the LGBP and TOP steps gives the method its name
LGBP-TOP (as outlined in [1]).

(1.15) For each element of the 4 × 4 grid, a histogram is created where the bins
are the 59 LBPs of interest and the height is determined by the average
of the LBP count in that element. Since there are 18 GPs, each with 3
orthogonal planes containing 4 × 4 grids, there are 18 × 3 × 4 × 4 = 864
histograms created. These histograms are concatenated to a set of 50,976
features characterizing the five frame batch. Where 50,976 arises from there
being 59 features per histogram i.e. 50,976 = 18× 3× 4× 4× 59.

(1.16) This number of features is so large it is almost certain that using all these
available dimensions in a model would lead to overfitting, particularly as
the training data has fewer instances. By overfitting we mean fitting the
excess features to noise in the training dataset. Hence a subset of features is
chosen to train the data on. The process of choosing which features to use
is outlined in [1]. In section 2.5, alternative ways of choosing these features
are explored.

(1.17) The final part of the procedure is to train a Support Vector Machine (SVM)
to recognize different action units (AUs) by finding correlations between
action units and features. SVMs are a standard machine learning technique
and are well understood, further detail can for instance be found in [7] and
[8].

(1.18) To meet the objectives of the project, improving accuracy, increasing pro-
cessing speed and assessing cost efficiency, a number of different approaches
were taken. The most obvious step is to reduce the total number of features
that are generated. This means, for instance, finding an optimum subset of
Gabor filters to use. Reducing the total number of features would represent
a cost efficiency, decrease the amount of processing required, and reduce the
chance of over fitting the SVM to the training data and thereby increase
accuracy. Sections 2.1 and 2.2 discuss a framework for picking an optimum
subset of Gabor filters. Section 2.5 meanwhile investigates how the dimen-
sion reduction step is taken, how it might be improved and whether it can
be used to determine which parameters are less important than others.

(1.19) As well as attempting to reduce the number of features, we assessed poten-
tial improvements to the methodology, paying particular attention to parts
that seemed to be ad-hoc and in need of better understanding. The ap-
proaches taken in this direction are outlined in Section 2.3 where the struc-
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ture of Gabor filters are explored, in Section 2.4 where the use of FFTs are
investigated, in Section 2.6 where the methodology of using LBPs is inves-
tigated, and in Section 2.7 where the gridding methodology is considered.
In addition the use of SVMs is discussed in Section 2.9.

2 Approaches to the Problem

2.1 Choosing the Optimum Set of Gabor Filters

(2.1) Gabor filters depend on various parameters, in particular a frequency φ and
an orientation θ. In accordance with [1], one set of good parameters is

φ ∈
{π

2
,
π

4
,
π

8

}
Frequencies

θ ∈
{kπ

6
| k = 0, . . . , 5

}
Angles

(2.2) This gives 3 × 6 = 18 possible combinations leading to 18 different Gabor
filters. In the current implementation by CrowdEmotion of the algorithm
LGBP-TOP [1] all 18 filters are applied and the resulting features (after
they have been histogrammed) are concatenated. One of the main ques-
tions posed by CrowdEmotion was whether all 18 filters were necessary for
obtaining a good accuracy when classifying action units. A reduction in
the number of Gabor-filters used would lead to a direct reduction in the
processing time for each image.

(2.3) We investigated how many of the given Gabor-filters were needed to obtain
good classification rates. This was done by getting the main software devel-
oper from CrowdEmotion to alter the source code such that we could enable
the filters one by one (unfortunately only one filter at the time). We were
then able to obtain accuracy measures for the different filters individually,
these are given in Table 1. By looking in depth at the numbers presented
in the table (for example by computing the median performance for each
angle or frequency), one can see that for AU1, a frequency of 22.5 seems
to perform significantly better and that for AU27, an angle of 60 degrees
seems to perform significantly better. It should be noted here that the
accuracies obtained are not useful by themselves, but the fact that some
filter-parametrizations outperform others is an indication that the choice of
filters should be investigated further, and that it is very likely that a subset
of the orignal 18 filters (or a smaller number of new filters) could lead to
the same amount of accuracy while reducing the processing time.

(2.4) When the number of Gabor-filters is specified, one needs to find a set of
optimal parameters for the filters. According to [9], a good approach to
selecting optimal parameters for Gabor-filters is to “sample uniformly one
of the parameters and perform a 2D search in the remaining dimensions”.
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Angle Frequency AU27 1 AU27 2 AU27 3 AU1 1 AU1 2 AU1 3
0 90 0.812087 0.790414 0.830341 0.488713 0.531759 0.5301

30 90 0.854423 0.877927 0.896334 0.483849 0.50977 0.45356
60 90 0.896141 0.86656 0.90626 0.474587 0.467798 0.51598
90 90 0.856489 0.859606 0.84175 0.494785 0.394204 0.50856

120 90 0.862764 0.85459 0.854361 0.47241 0.459189 0.43952
150 90 0.827946 0.857035 0.857391 0.488301 0.488352 0.5538

0 45 0.7866 0.795169 0.843658 0.462362 0.50294 0.44445
30 45 0.877915 0.875895 0.874561 0.532812 0.469046 0.47031
60 45 0.899448 0.914527 0.889571 0.528018 0.510238 0.51682
90 45 0.901605 0.824795 0.876945 0.459712 0.516778 0.46747

120 45 0.84645 0.866322 0.843059 0.503215 0.496067 0.48502
150 45 0.859431 0.849256 0.848155 0.475401 0.47505 0.55442

0 22.5 0.783895 0.689591 0.793548 0.497885 0.5061 0.48933
30 22.5 0.820737 0.804938 0.754799 0.596578 0.693722 0.60911
60 22.5 0.866132 0.88609 0.854865 0.755597 0.573194 0.57738
90 22.5 0.808892 0.862207 0.806295 0.516895 0.547131 0.52234

120 22.5 0.814439 0.859716 0.850162 0.510153 0.543315 0.57855
150 22.5 0.752165 0.737825 0.806632 0.640927 0.556124 0.58658

Table 1: Each of the 18 rows corresponds to a filter with parameters given in the first
two columns. The next three columns (AU27 1, AU27 2 and AU27 3) are accuracy
results for AU27 and the next three are results for AU1. The three columns for each
action unit corresponds to three runs of the code (the results are not deterministic
because of a random training/test split). The accuracy measurements are 2AFC-
scores where a score of ±1.0 is optimal and 0.5 is random.
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Alternatively one could use a heuristic search (e.g. genetic algorithms) to
search more intelligently for an optimal set of parameters.

2.2 Optimisation Formalism

(2.5) Framing decision problems as optimisation problems is a useful approach.
One benefit of this is that the problem at hand is immediatly and accurately
specified. Furthermore, it also makes available the vast number of highly
developed optimisation algorithms from the literature. Several optimisation
ideas were suggested, some of which were:

1. Frame the problem as a continuous optimisation problem. Suppose
the information from the different Gabor filters can be merged using
weights (which add up to one, or some arbitrary constant). One way
of doing this is to average over the histograms from different Gabor
filters. One can then specify an objective/cost function in terms of
those weights and the filters, and use (gradient-less) continuous opti-
misation algorithms to find an optimum set of weights. It would then
also seem justified to fully turn off (set the weights to zero) the filters
with small weights. After this, the optimisation should be run again.

2. Genetic algorithms lend themselves to discrete optimisation and as
such they are a good alternative to finding the optimal Gabor filter
selection.

3. Manual tuning. This is related to section 2.1, and should be aided by
investigations of covariances between the results from different Gabor
filters.

2.3 Mathematical Formulation of Gabor Filters

(2.6) Gabor filters are bandpass filters commonly used in edge detection. The
impulse response for a Gabor filter is given by the product of a Gaussian
envelope (which plays the role of a bandpass filter) and a complex sinusoid
(which acts as the kernel in a Fourier transform), i.e.

g(x, y;x0, y0, σ, θ, φ, P ) = G(x, y;x0, y0, σ, θ)S(x, y;x0, y0, φ, P ),

where the Gaussian envelope G is given by

G(x, y;x0, y0, σ, θ) = exp
(
−πσ2((x− x0)2r + (y − y0)2r

)
),

and the complex sinusoid S is given by

S(x, y;x0, y0, φ) = exp (2πiφ((x− x0)r + (y − y0)r) + P ) .

The coordinates (x− x0)r and (y− y0)r are rotated coordinates, defined by

(x− x0)r = (x− x0) cos θ + (y − y0) sin θ,

(y − y0)r = −(x− x0) sin θ + (y − y0) cos θ.

8
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(2.7) We may also write the impulse response in matrix-vector form. Let u =
(x, y)T and u0 = (x0, y0)

T , so that u and u0 are column vectors. Define the
matrix R to be

R =

(
cos θ sin θ
− sin θ cos θ

)
,

Then, the impulse response for a Gabor filter is given by

g(u;u0, σ, θ, φ, P ) = exp(−πσ2(u− u0)TRTR(u− u0)) exp(2πiφuT1 + P ),

where 1 is a column vector of ones. Note here that RTR = I, where I is
the identity matrix. Therefore, the impulse response function is now

g(u;u0, σ, φ, P ) = exp(−πσ2(u− u0)T (u− u0)) exp(2πiφuT1 + P ),

i.e. the function g is independent of θ. In this case, the Gaussian envelope
is independent of the rotation angle θ.

(2.8) Let f(u) be a function. Then, the Gabor filter of f , denoted by Ff , is
defined to be the convolution of f and the impulse response, i.e. we have

Ff(u) =

∫
g(û;u0, σ, φ, P )f(u− û) dû := (g ∗ f)(u). (2)

(2.9) From (2), we find that the Gabor filter is linear, since for every scalar
α, β ∈ R and two functions f1 and f2, we have

F(αf1 + βf2) = g ∗ (αf1 + βf2) = α(g ∗ f1) + β(g ∗ f2) = αFf1 + βFf2.

Furthermore, if F1 and F2 are two filter operators with impulse responses
g1 and g2 respectively, then

F2[F1[f ]] = g2 ∗ (g1 ∗ f) = g1 ∗ (g2 ∗ f) = F1[F2[f ]],

i.e. the filtering process commutes, the order at which the filtering pro-
cesses are applied does not matter. This follows from the commutative and
associative properties of a convolution.

2.4 Using Fast Fourier Transforms

(2.10) As discussed in Sections 1.4 and 2.3, in a spatial coordinate sytem with
coordinates (x, y), a Gabor filter is defined as the product of a Gaussian
envelope and a sinosoidal carrier. In (3), a slightly different formulation
than (1) for such a filter is given. The main difference is that there is a
scale factor given to each direction, a normalization factor, and the spatial
frequency is allowed to differ in the x and y directions.

9
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G(x, y) =
1

2πσxσy
exp

(
− 1

2

(((x− x0)r
σx

)2
+
((y − y0)r

σy

)2))

· exp

(
2πı

(
µx(x− x0)r

σx
+
µy(y − y0)r

σy

))
(3)

where [(x − x0)r, (y − y0)r]T is the vector obtained by the rotation of [x −
x0, y − y0]T by an angle of θ in the clockwise direction, i.e.[

(x− x0)r
(y − y0)r

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x− x0
y − y0

]
,

(x0, y0) is the center of the filter; (σx, σy) determines the bandwidth; (µx, µy)
is the frequency the sinusoidal component of the filter in the x and y direc-
tions respectively; θ is a parameter that determines the orientation of the
filter, i.e. the orientation of the Gaussian, and (µx/σx, µy/σy) determines
the orientation of sinusoid within the filter. The form of the filter presented
here differs slightly from the two-dimensional version proposed in [10] in
that ((x−x0)r, (y−y0)r) is scaled with (σx, σy) both in envelope and carrier
for a consistent scaling.

(2.11) For the parameters σx = 1, σy = 2, µx = π/8, µy = π/4, the real part
of Gabor filters are displayed in Figure 3 over the region [−4, 4] × [−4, 4]
corresponding to θ = [0,−π/4,−π/2,−3π/4], from left to right and top to
bottom respectively.

(2.12) Notice the orientation of the Gaussian and sinusoid components of the filter
in Figure 3 as θ values increases.

(2.13) In this report we focus on the use of Gabor filters in identifying the disconti-
nuities in intensity of an image, a technique better known as edge detection.
The images we are interested in are of the human face, as this is the focus
of the study group problem.

(2.14) There are many different approaches to edge detection. We refer to a survey
[11] for commonly used edge detection methods; Gabor filters belong to the
family of Gaussian based methods. Different methods tackle the problem
with some common issues such as reduction of noise and isolation of false
edges that may arise during the edge detection precedure.

(2.15) Applying a filter to a signal is represented mathematically by convolving the
signal and filter functions. Refer to [12] for an introduction to the topic. For
a two-dimensional image I and a filter G, recall that the linear convolution

10
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Figure 3: Real part of the Gabor filter corresponding to θ = [0,−π/4,−π/2,−3π/4]
values from left to right and top to bottom respectively.

is defined as

[I ∗G][m,n] =
∞∑

i=−∞

∞∑
j=−∞

I(i, j)G(m− j, n− j) (4)

(2.16) From (4) it is apparent that the convolution procedure modifies the image
pixel values, indexed by the pair (m,n), by using a linear combination of
neighboring pixel values. This combination is formed through the filter
values, i.e. every pixel is weighted by the value of the filter at that point
and the weighted values are added up to determine the new pixel value.
The size of the contributing neighbours are determined by the size of filter
and

Filtered Image = Image ∗ Filter

where ‘∗’ represents the two dimensional convolution. In image filtering,
the summation indices in (4) run over finite intervals. If I is of size N ×N
and G is of size M ×M , then the linear convolution (4) is of size (N +M −
1)× (N +M − 1).

(2.17) For a filter of size M × M , modification of a single pixel value requires
O(M2) operations (additions and multiplications). For an image of size
N × N , the complexity of convolution is around O(M2N2) which gives a
heavy burden on computational resources as the size of the image and the
filter become ‘large’. Furthermore, in the context of edge detection, filtering
has to be perfomed more than once with different sets of parameters to
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identify particular edges, so it is important that the convolution procedure
is performed in the most efficient way.

(2.18) One way of reducing the complexity is to perform a Fast Fourier Transform
(FFT) convolution using the discrete version of the well-known convolution
theorem for circular convolution:

FFT(Filtered Image) = FFT(Image ∗ Filter)

= FFT(Image)× FFT(Filter) (5)

Applying the inverse FFT, say FFT−1, to each side, we have

Filtered Image = Image ∗ Filter

= FFT−1(FFT (Image)× FFT (Filter))

(2.19) This procedure leads to a convolved image without performing a convolution
at all. Here, the product ‘×’ in (5) means pointwise multiplication of com-
plex numbers in the frequency domain. The complexity of this procedure
for an image of size N×N is about O(N2 log2(N

2)), which is a considerable
reduction compared to O(M2N2) for the traditional convolution and it is
independent of the filter size.

(2.20) However, instead of circular convolution which may distort edges, we would
like to compute the linear convolution, yet taking advantage of a Fast Fourier
Transform. To do so, one approach is to use so-called zero-padding [13]
where both the filter with size N1 × N2 and image with size M1 × M2

are padded with zeros, resulting in an extended image, Image e and the
extended filter, Filter e, of the same size (2n, 2m) >= (M1 + N1 − 1) ×
(M2 +N2 − 1), namely,

Image e(i, j) =

{
Image(i, j) (i, j) ∈ N ×N

0 otherwise

and

Filter e(i, j) =

{
Filter(i, j) (i, j) ∈M ×M

0 otherwise

(2.21) We require the extended image and filter to be of the size (2n, 2m) so that
we can take advantage of the speed of FFT’s.

(2.22) One can then compute FFT−1(FFT(Image e)×FFT(Filter e)) which be-
comes the linear convolution Image∗Filter, without having to compute the
convolution itself. However, extra zeros resulting from zero padding have
to be isolated appropriately. A MATLAB code implementing convolution
using the FFT convolution procedure outlined above is given in Appendix
A.1.
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Image Size Filter Size CPUTime(of 100 runs) CPUTime(of 100 runs)
(N ×N) (M ×M) (Traditional Convolution) (FFT Convolution)
N = 100 M = 10 0.4219 0.5313

20 1.0156 0.5313
30 1.9375 2.4219
40 3.4531 2.4219
50 4.9688 2.4375
100 17.1406 2.4375

Table 2: Trial runs of convolutions implementing using a traditional and FFT
convolution, N = 100.

Image Size Filter Size CPUTime(of 100 runs) CPUTime(of 100 runs)
(N ×N) (M ×M) (Traditional Convolution) (FFT Convolution)
N = 200 M = 10 2.5156 2.5000

20 4.1250 2.4375
30 7.7813 2.4531
40 13.7031 2.5000
50 20.0156 2.5000
100 68.7344 15.6563

Table 3: Trial run of convolutions implementing using a traditional and FFT con-
volution, N = 200.

(2.23) Table 2 and Table 3 show typical results from traditional convolution and
FFT convolutions from random image and filters produced within the MAT-
LAB environment. The indicated CPU times correspond to those of one
hundred runs.

(2.24) The results for both image sizes indicate that FFT convolution is much
faster than the traditional convolution in almost all the image and filter
sizes. However, zeropadding upto power of two, as done here, is crucial,
otherwise FFT convolution may not perform better.

(2.25) In Figures 4 and 5 we display contour plot of Gabor filters of computational
size [9× 9] and an FFT convolved imaged with parameters σx = 1, σy = 2,
µx = π/8, µy = 0 and orientations θ = 0,−π/4 and θ = −π/2,−3π/4,
respectively.

(2.26) In Figure 6, we display the contour plots of the superposition of the edges in
Figures 4 and 5, which is a relatively good description of the corresponding
image.

(2.27) Another approach for an efficient implementation of Gabor filters is the
separation of the filter into product of one dimensional filters

G = G1×G2
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Figure 4: Gabor Filter and edge detection with θ = 0 (top), θ = −π/4 (bottom)

Figure 5: Gabor Filter and edge detection with θ = −π/2 (top), θ = −3π/4
(bottom).
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Figure 6: Superposion of edges detected in Figure 4 and Figure 5

and then perform two one dimensional filters, instead of one two dimensional
filter, see the relevant literature for details.

2.5 Dimension Reduction

(2.28) This work focussed on reducing the number of features after generating them
from the LGBP. Given that others were working further up the processing
chain, one of the core requirements was to ensure that the dimension reduc-
tion technique worked regardless of how many features were passed down
from the upstream process. The purpose of reducing the number of features
is to help improve the classifier performance. A classifier trained with more
features than samples is not going to be a true representation of the entire
range of possibilities; this can lead to overfitting (the classifier will find it
difficult to classify previously unseen samples due to the huge variability
created by having so many features - it will have fitted noise in the training
data to excess features).

(2.29) The work was conducted in two stages:

1. Reduce the number of features using a repeatable and robust method.

2. Re-train the classifier for an action unit based on the reduced feature
set.

(2.30) In order to reduce the number of features, we had to understand the char-
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Figure 7: Gaussian normed graph of features from one Gabor filter.

acteristics of the features themselves. Thus we constructed a histogram of
how many times each feature has a non-zero value i.e. exist in the data
sample space (we used about 500 samples to conduct the analysis). Figure
7 shows a Gaussian normed graph of the features for one filter, and it is
possible to see that the majority of the features occur 0 or very few times
(up to 0.1).

(2.31) There are very few features that occur often (> 0.1). In this case < 0.1 was
selected as a threshold for ignoring the features (a slightly arbitrary value,
but based on the graph, most of the features that do not occur very often
are < 0.1). By removing these features it was possible to reduce the feature
set for Gabor filter one to 76 down from 2,832. This is a large reduction
that is repeatable. One could argue that the features that occur rarely
or not at all add more to the information than features that occur often
and it is possible that this is true. However when conducting classification,
the features with very low or 0 values will be given a lower weighting than
features with a large contribution. The following formula, using Lagrange
multipliers (α), determines the hyperplane (defined by w and b) used in the
SVM. Hence, by considering this formula, the effect of feature frequency on
classification can be determined:

arg min
w,b

max
α≥0

(1

2
‖w‖2 −

n∑
i=1

αi
(
yi(w · xi − b)− 1

))
(6)

(2.32) xi represents the features for the sample where xi ∈ Rn, yi represent the
classification of datapoint i. Thus a feature that occurs infrequently will
contribute far less to the classifier. The small rare occurring features may
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contain most variance and thus most of the information, but this is not
considered in the SVM classifier when there are several thousand features
used to train it.

(2.33) We were able to reduce the total number of features to 442 for all filters,
significantly less than 50,976. This should also contribute to making the
classifier more accurate as it will reduce the chance of misclassification.

(2.34) The second stage was to train the classifier with the reduced feature set
and test its performance. Initially a 60/40 split of the available sample
data was used to train and test the classifier respectively. For AU1 (the
only one tested during the study group) of 2,000 samples, only 34 were
activated (1s) and the remainder were deactivated (0s). By using this large
disparity in training samples (21 true, 1,179 false), the classifier is heavily
biased towards the false class, meaning that it is very difficult to classify
any true classes correctly. To correct this bias, a five pass cross-verification
scheme was used, where a random data set consisting of 500 false samples
and 21 true samples were used to train on each pass, with a different test
set of random data consisting of 300 false and 13 true points. By using
this scheme and correcting the bias of the available true / false samples
the classifier attained a 98% accuracy for this action unit using the reduced
feature set.

2.6 Local Binary Patterns

(2.35) In [1] it is stated that only 59 of the possible 256 LBPs are of significance.
We wanted to understand why this subset of possible patterns contain the
most important information. The 256 possible LBP are shown in Figure 8.

Figure 8: The 256 patterns represented as 36 different patterns up to rotational
symmetry. Black and white dots represent ones and zeros. Picture from [14]

(2.36) In the literature the first row from Figure 8 are generally referred to as
“uniform” patterns. These each have one block of 1’s and one of 0’s, or
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have all 1’s or all 0’s. If there is more than one type of block there are eight
patterns corresponding with the eight possible rotations. Hence there are
7×8+1+1 = 58 different “uniform” patterns. “Non-uniform” patterns have
more than one block of 1’s and 0’s. “Uniform” patterns can be interpretted
as being more likely to correspond to edges; one block of 0’s and one of 1’s
indicate a strong transition from a light to dark area. While “non-uniform”
patterns correspond to mixed areas, which are likely to not be edges. Since
identifying edges helps locate the action units, the useful patterns to identify
are those that correspond to edges. Moreover in [14] experimental data has
shown that in various texture images roughly 90% of all LBP patterns come
from these “uniform” patterns. Further experimental data (see for example
[15]) has shown that the same proportional of patterns are uniform in facial
images.

(2.37) As a result, nearly all current implementations using LBP, including the
one considered in this report, look for these 58 uniform patterns, which
are shown in Figure 9, and then group all the other patterns into a 59th
category.

(2.38) It would seem that 58 is really the minimum that we could take to pro-
duce useful results, but we could perhaps increase performance slightly by
ignoring the 59th category. This is because it is questionable whether amal-
gamating 206 patterns into one category and counting how many of these
we have is useful. Experimental data could be used to test this, and imple-
mentation should be relatively easy.

Figure 9: The 58 “uniform” patterns represented as 9 different patterns up to
rotational symmetry. Black and white dots represent ones and zeros. Picture from
[14]

2.7 Gridding

(2.39) A rectangular cutout of the region containing the face is obtained for each
frame in the current implementation. This cutout is then partitioned by a
4x4 grid, providing some measure of locality. A relatively simple area for
improvement could be to leave out a few of the grid cells that are peripheral
to the face. Another possibility is non-rectangular cutouts and/or grid cells,
although this may prove more complicated and/or costly due to higher
complexity of such geometries.

(2.40) Currently we take a rectangle of cropped face, apply Gabor filters to it and
then compute binary patterns for every pixel. We then split the image into
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Figure 10: Applying the elliptic stencil to an image

a 4× 4 grid, and see how many of each LBP pattern we have in each of the
16 regions.

(2.41) The reasoning for splitting the image into further regions is clear, since
this gives us an opportunity to focus on just a couple of action units per
region. However, the justification of why we choose a 4×4 grid, and not any
other size is relatively unclear. In [17] it is noted that a 4× 4 grid generally
performs better than a 3×3 experimentally, but little other literature exists
on the subject.

(2.42) If we decrease the number of regions then we decrease the number of features
which will speed up the SVM step and also ensure we are not over-fitting
the data.

(2.43) A final point to add (see [16]) is that the regions do not need to be the same
size, they can overlap and they do not need to cover the whole image. It is
this last part that inspires what follows.

2.8 Elliptic Stencil

(2.44) We note that the four corners of the rectangle are not going to be useful
for emotion recognition, and indeed could even hinder it (since it could
introduce edges outside the face). Our proposal is to create an elliptic
stencil for the image, and then only perform LBP on the pixels within
this elliptic stencil. This would mean we only perform the LBP on only
78% (π/4) pixels, which represents considerable saving.

(2.45) Sample MATLAB code for this is detailed in the Appendix A.2. The code
takes the image after applying the Gabor filters, and assigns a pixel value
of −1 to all pixels outside of the ellipse stencil, while inside the pixel values
are unchanged. We would then run the LBP scheme on all pixels with pixel
values greater than zero. We would deal with the edges of the elliptic stencil
in the same way as the edges of the rectangle before, which was not made
clear but we presume the edges were ignored.
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(2.46) We note that although we could in theory apply the elliptic stencil before
the Gabor filters, this seems to change the results.

(2.47) The best way to split the elliptic stencil into further regions (such as the
4 × 4 grid) is an open question, which would require experimental testing.
However, by applying the eliptical stencil we would hope you could use less
than 16 regions.

2.9 SVM and Alternatives

(2.48) Support vector machines (SVM) are a very fast classification method once
they have been trained. It is also very reliable, having been a standard
method in Machine Learning for more than 20 years, and is fairly customis-
able, see [7] and [8] for further background. The advantage of an SVM lies in
the training involving non-linear optimization, and the fact that the objec-
tive function is convex, so solving the optimization problem is direct. The
number of prameters in the result ends up being smaller than the number
of training points, but the number of these parameters is still quite large.
An alternative approach is to set the number of parameters from above but
allow them to be adaptive. This can be achieved through a feed-forward
neural network [18]. For many applications the resulting model can be sig-
nificantly more dense, and hence faster to evaluate than an SVM. The cost
for this accuracy is that the likelihood function which forms the basis for
training the neural network is no longer convex. In practice it is often worth
investing extra computational resources during the training phase to obtain
a denser model that is thus faster at processing new data.

(2.49) Methods also exist which attempt to obtain“intensity” measures of differ-
ent emotions. This would be achieved by determining some sort of dis-
tance measure from the classification hyperplane in the SVM. According
to the main developer, however, this has proven somewhat problematic. A
straightforward alternative might be a logistic regression.

3 Conclusions and Recommendations

(3.1) The main focus of this report has been on how to reduce the feature set
to improve the accuracy of classification by avoiding overfitting, and also
decrease processing time as fewer calculation need to be implemented. In ad-
dition we interrogated the methodology set out in [1], finding that although
some parts seemed ad-hoc on first reading, by and large the methodology
was well justified.

(3.2) The preliminary results gained in Section 2.1 indicate that it is likely that
a subset of the bank of 18 Gabor filters can be used to identify emotion
states. Sections 2.2 gives three methods that might be used to determine
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this subset: posing the problem as a continuous optimisation problem, using
a genetic algorithm, and manual tuning. In all three approaches a significant
amount of time would be required to determine the filters required to classify
each AU. An intuitive argument can be given to understand why not all
filters are necessary. Simply put, each Gabor filter is good at picking out
edges at different orientations. This can be seen in Figures 4, 5, and 6,
where edges in line with the filter are best identified. For a specific AU an
edge with one particular orientation might be all that is required to classify
it. For instance, smiling activates AU12 (lip corner puller); this may only
require vertical edges to be identified to be correctly classified.

(3.3) Section 2.3 discussed mathematically how the Gabor filtering process is car-
ried out, and 2.4 explored using FFT techniques to speed up calculations.
The main result is that using the methodology in Section 2.4, padding
images and filters with zeros, applying FFTs to the image and filter, per-
forming the convolution in Fourier space (as a multiplication), and then
taking the inverse FFT, would give a significant speed up compared with
performing the convolution directly.

(3.4) A reduced set of features could be chosen using the method outlined in
Section 2.5. Section 2.6 shows why taking 59 out of the possible 256 LBPs
is a reasoned process to follow and not an ad-hoc procedure. Sections 2.7
and 2.8 suggest an alternative approach to gridding the image by discard-
ing information that is not useful. The last section [7] discussed potentil
alternatives to using an SVM as the classifier.

(3.5) As a final point the contribution of Paul Dellar should be mentioned. Over
the week, he helped CrowdEmotion utilize the CUDA toolkit to diagnose
memory allocation problems.

A Appendices

A.1 MATLAB Code for FFT

function Result=fftconv2(Image,Filter)

%Linear convolution with fft of size 2^n,

%Author: Erhan Coskun, May, 2014.

[N1,N2]=size(Image);

[M1,M2]=size(Filter);

K1=N1+M1-1; % Size of Linear Filter

K2=N2+M2-1; % "

n=pow two n(K1); %smallest n such that 2^n >=K1

m=pow two n(K2); %smallest m such that 2^m>=K2

two to n=2^n;
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two to m=2^m;

Image e=zeros(two to n,two to m);

Filter e=zeros(two to n,two to m);

Filter e(1:M1,1:M2)=Filter; % padded filter

Image e(1:N1,1:N2)=Image; % padded image

fftfilter=fft2(Filter e); % fft of padded filter

fftimage=fft2(Image e); % fft of padded image

Frprod=fftfilter.*fftimage; % pointwise multiplication of fft’s

Result=ifft2(Frprod); % Inverse fft

Result=Result(1:K1,1:K2); %Isolate zero paddings

M1p=ceil((M1-1)/2); % Indices for central part

M2p=ceil((M2-1)/2); % "

Result=Result((M1p+1):(N1+M1p),(M2p+1):(N2+M2p));

% central part of convolution

function n=pow two n(K);

test=1;n=0;

while test

n=n+1;

test=2^n<K;

end

A.2 MATLAB Code for Eliptical Stencil

Figure 11: Matlab code for taking an image (in this case “face2”) and creating an
elliptic stencil
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