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Abstract

We consider the problem proposed by Thales Nederland at the SWI 2012
meeting. Thales Nederland is the Dutch branch of the international Thales
Group. The company specializes in designing and producing professional
electronics for defence and security applications, such as radar and commu-
nication systems. Moreover, Thales Nederland acts as a local point of contact
for the complete portfolio of the Thales Group.

During the SWI 2012 meeting, on behalf of Thales Nederland, Dr. Maurits
de Graaf posed several questions regarding the maximization of the lifetime
of a wireless sensor network. We addressed these questions during the work-
shop and our most significant results are summarized as follows: We have
proven that this lifetime maximization problem, even under the most simple
constraints, is NP-complete, so it is not possible to find an algorithm that
gives the optimal solution within polynomial time. Furthermore, we have
constructed a counterexample to illustrate that the heuristic currently used
by Thales can be asymptotically at least logn times worse than the optimal
solution. Moreover, we have developed a new heuristic and have illustrated
with several numerical examples that it performs better than the heuristic
currently used by Thales. Finally, we have formulated the problem as a lin-
ear programming problem and used this to quantify how far the heuristic
used by Thales is from being optimal.

Keywords: ad hoc networks, network lifetime, multipoint relay selection,
linear programming.

1 Introduction

One of the most important examples of wireless ad hoc networks are wireless
sensor networks. Sensor networks can be dynamic, i.e. the topology of the wire-
less network can change over time (e.g. networks of wearable communication
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systems), or static (e.g. sensors in a forest for detecting fires). Sensor networks
occur in different real-life settings, for example, in the military, in emergency
services or in radar systems (see, e.g., [2] and its references). In all the afore-
mentioned situations it is of vital importance that all nodes in the network can
always communicate with each other. We assume that each node in a wireless ad
hoc network is equipped with an (omnidirectional) antenna and with a battery
of limited capacity. The constraint of limited battery capacity is one of the most
important features of sensor networks. Therefore it is essential to develop net-
working algorithms and protocols that are optimized for energy efficiency.

Usually these wireless ad hoc networks are spread over very large areas. Un-
der this condition one has to employ routing techniques so that the out-of-range
nodes can communicate with each other via intermediate nodes. The problem
of routing in wireless networks is addressed using different routing protocols.
These protocols are distinguished into reactive (finding the route to a destina-
tion when it is needed) and proactive (periodically exchanging control messages,
which inform on the local or entire topology of the network). The proactive pro-
tocols immediately provide the required routes when they are needed, at the
cost of bandwidth and battery consumption. Over the last decade the most com-
monly used proactive protocol is the Optimized Link State Routing (OLSR) (see,
e.g., [3]). The OLSR protocol is an optimization strategy for wireless networks
that reduces the number of control messages and minimizes flooding of this
control traffic by using only a subset of the nodes to send the messages through
the system. Each node in the network selects a set of nodes in its neighborhood
to retransmit each message it broadcasts. This set of selected neighbor nodes is
called a multipoint relay set (MPR-set) of this node. The neighbors of any node
that are not in its MPR-set receive its messages but do not retransmit them. Each
node v selects its MPR-set among its 1-hop neighbors in such a way that mes-
sages sent from v are relayed by its MPR-set to all nodes that are two hops away
(in terms of radio range). The smaller the MPR-set, the more optimal the traffic
control of the network. The MPR-set can change over time, in accordance to the
changes of the network topology over time. For the sake of simplicity, in the rest
of the manuscript we will consider a stationary network, i.e. we assume that the
topology of the network does not change over time.

Many research papers aim at optimizing the selection of MPRs with a specific
purpose in mind, e.g., to minimize the number of MPRs used, to keep paths with
high Quality of Service, or to maximize the network lifetime (the time until the
first node runs out of battery power or the first time at which a communication
fails due to battery depletion). In this manuscript we will focus on the maxi-
mization of the network lifetime. We adopt the definition of network lifetime as
the time until the first node fails due to battery depletion (see, e.g., [9] and its
references). Our aim is two-fold: on the one hand to check the non-optimality of
the existing algorithms that select relay nodes with the objective of maximizing



Optimization of Lifetime in Sensor Networks 41

the network lifetime, and on the other hand to propose a better heuristic. We
will carry out our analysis in two levels distinguishing whether we fall within the
specifications of an OLSR network or not.

Consider a group of wireless static nodes randomly distributed in a region,
where each node has its own battery supply used mainly for the transmission
of messages. We assume that for each transmission (independently of whether
this is the initialization of a transmission or a message forwarding) the battery
level is reduced by a fixed amount. This linear battery model approach is a sim-
plification compared to reality, where the batteries have a recovery time. The
node initializing the data transmission is called the source. After the source has
sent the message, which will be received first by its neighbors and eventually
by all the other nodes in the network, another node becomes the source. We
assume that this process continues until all the nodes have acted as a source,
which means that a round has been completed. The order of the sources during
a round may be prescribed or random.

This problem was brought to our attention during the SWI 2012 meeting on
behalf of Thales Nederland, by Dr. Maurits de Graaf. The following directions
of investigation were proposed regarding the maximization of the lifetime of a
wireless sensor network:

Direction 1: What would be the optimal MPR selection algorithm? With a
linear battery decrease model it should be possible to formulate this as a linear
program. How much does the optimal solution differ from the known heuristics?
Can we define easily a better heuristic than the Maximum Willingness heuristic
algorithm used by Thales?

Direction 2: Assume additionally that a node can choose between different
power levels. For a higher power level a node will have larger set of neighbors
to choose its MPR-set from. Can we formulate the optimization problem and
find some good heuristic to solve it (a solution being an assignment of transmit
powers and MPR-sets)? What would be the impact on the network lifetime?

Direction 3: What is the effect on the network lifetime problem when using a
battery model with a recovery effect?

The paper is organized as follows: In Section 2 we formulate the problem.
In Section 2.1 we present the Maximum Willingness heuristic algorithm used by
Thales. The rest of the paper is divided into two parts. In the first part (Section
3) we treat the problem of selecting the relays of a network having a general
topology in order to maximize the network lifetime. In the second part (Section
4) we treat the same problem within the OLSR framework.

More specifically: In Section 3.1 we show that outside the OLSR framework
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the problem under consideration is NP-complete, so it is not possible to find an
algorithm that gives the optimal solution within polynomial time. We do this by
reducing our problem to the Set-Cover problem, which is a known NP-complete
problem. Furthermore, in Section 3.2 we construct a counterexample to illustrate
that the Maximum Willingness heuristic does not provide the optimal solution
to the problem, which was expected since the problem is NP-complete (unless
P=NP). In Section 3.3 we present a new heuristic and in Section 3.4 we illustrate
with several numerical examples that our algorithm performs better than the
Maximum Willingness heuristic. Furthermore, in Section 3.5 we formulate the
problem as a linear programming problem (LP). In Section 4 we work inside the
OLSR framework. In Section 4.1 we show that the Maximum Willingness heuristic
can be at least Ω(logn) times worse than the optimal solution. Furthermore, in
Sections 4.2 and 4.3 we present two LPs for optimizing the network lifetime.
Finally, in Section 4.4, we conclude our analysis with some numerical results
comparing the Maximum Willingness heuristic with the optimal solution. We
close with discussions and extensions in Section 5.

2 Formulation of the Network Lifetime Problem

Let G = (V , E) be a connected graph with n nodes, where V denotes the set of
nodes and E the set of edges. A network transmission (a message circulated
through the entire network) is defined as a time slot, in the sense that time is
updated by 1 when a message is sent to all the n − 1 nodes of the network
starting from any given source, i.e. for every time r there is one single node
acting as source, say sr ∈ V , that sends the initial message. This initial message
is then forwarded through the entire network. Hence, time r ∈ N0 represents the
total number of different sources that have sent a message across to the entire
network.

A battery level Bv(r) is associated with every node v at time r . We assume
that the battery levels are reduced by a fixed amount for every message sent. For
simplicity this fixed amount is chosen to be 1.

If we denote by R(r) the set containing the source at time r and all relay
nodes that forward the message at time r , then the battery level evolution can
be described as follows: for every v ∈ R(r) we have Bv(r + 1) = Bv(r)− 1. For
all other nodes Bv(r + 1) = Bv(r).

Instead of only focusing on minimizing the battery consumption of the in-
dividual nodes, it is important, especially in emergency situations, to maximize
the network lifetime l, i.e. the first time at which at least one of the batteries is
flat:

l =min{t : Bv(r) = 0 for at least one v ∈ V}.
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Note that l depends on the algorithm that is used to circulate the message
through the entire network.

The problem can be formulated as follows: Given a connected graph G, a
starting distribution of battery levels and a source assignment protocol, choose
the relays used to circulate the messages so that the network lifetime is maxi-
mized:

L =max{min{r : Bv(r) = 0 for at least one v ∈ V}}
subject to

Bv(r + 1) =
{
Bv(r)− 1, if v ∈ R(r)
Bv(r), otherwise.

2.1 Thales Approach: Maximum Willingness Heuristic

In order to solve the problem stated above we need to have a heuristic that
provides us with an optimal selection of relays at each time. Many algorithms
address the network lifetime problem in general topology networks. The most
relevant for this paper is the Maximum Willingness (MaxWill) algorithm. In this
section we closely follow the notation and terminology of [9].

Let G = (V , E) be a connected graph, where V denotes the set of nodes, E the
set of edges and n is the number of nodes, i.e. |V | = n. Furthermore, let Nm(v),
v ∈ V , denote the strict m-hop neighborhood of node v , i.e. the set of nodes
for which the shortest path to v has exactly m edges. A subset M(v) ⊂ N1(v)
is called an MPR-set if M(v) dominates N2(v), i.e. each node in N2(v) has a
neighbor in M(v). Furthermore, for a given MPR-set M(v), we call each node in
this set an MPR node of v . Finally we denote the set of all possible MPR-sets of
v by MPR(v).

The MaxWill MPR selection algorithm uses the following structure to calculate
an optimal MPR-set M(v) for node v :

1. Start with an empty MPR-set for node v and add nodes of N1(v) that are
the only neighbors of some node in N2(v).

2. While there are still uncovered nodes in N2(v), select the nodes from
N1(v) that cover at least one uncovered node and have the highest re-
maining battery level.

3. Optimize the MPR-set by attempting to remove a node from M(v) and
checking if N2(v) is still dominated. If this is the case, the node is removed
from M(v). Nodes are removed in the order lowest remaining battery level
first.
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Note that the MaxWill MPR-selection algorithm is a localized algorithm, since
each node v ∈ V selects an MPR-set M(v) independently from the other nodes.

Thales uses the MaxWill algorithm and as demonstrated in [9] this algorithm
performs better in most cases than other MPR-selection algorithms.

3 Our Approach: Outside the OLSR Framework

We investigate the impact of the selection of the relays on the lifetime of the
sensor network. In this section we do not enforce the OLSR constraint that mes-
sages should be broadcast in layers (see Section 4 for more details about this
constraint). In Section 3.1 we prove that the Network Lifetime problem is NP-
complete. Our ideas are similar to those of [7] and [10], who consider related (but
not exactly the same) problems. In Section 3.2 we emphasize the weaknesses of
the MaxWill heuristic introduced by [9]. We show that for small networks the
MaxWill heuristic is outperformed by a path-based heuristic, which is described
in Section 3.3. The path-based heuristic attempts to maximize the network life-
time by avoiding using nodes with low battery level, if possible. In Section 3.4 we
give simulation results for the path-based algorithm and the MaxWill algorithm.
In Section 3.5 we formulate the relay selection problem as a LP.

3.1 Proof of NP-completeness

We will show that the problem of maximizing the network lifetime is not only
NP-complete, but that it is also hard to approximate within a factor of Ω(logn),
where one writes f(n) = Ω(g(n)) as n → ∞ for two functions f and g if and
only if there exists a positive real number M and positive integer n0, such that
|f(n)| ≥ M|g(n)|, for all n ≥ n0.

We give a reduction to the so-called maximum domatic partition problem
(see [5]), defined as follows. Given a graph G = (V , E), a dominating set of G
is a subset S ⊂ V such that each node v ∈ V is either in S or has a neighbor
in S. The domatic number of G is the maximum number of dominating sets
into which the vertices V can be partitioned. Let k be the maximum number
of disjoint dominating sets contained in the graph G. [5] showed that for ev-
ery ε > 0, no polynomial times algorithm can approximate the domatic number
problem within a (1 − ε) logn factor, unless NP has a slightly superpolynomial-
time algorithm, i.e. unless NP ⊆ DTIME(nlog logn). Hence, it is impossible to
approximate the size of the maximum domatic partition to a factor better than
Ω(logn). In particular, for any n, there are instances such that no efficient al-
gorithm can distinguish whether the domatic number is at least k or at most
O(k/ logn). In fact, [5] show the following stronger result (which is the one we
need): No efficient algorithm can distinguish whether the domatic number is at
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least k, or whether there is a dominating set of size O((n logn)/k). Note that
this is a much stronger hardness result, as the domatic number must be at most
O(k/ logn) if the minimum dominating set has size Ω((n logn)/k).

We will use the above problem to show the Ω(logn) hardness of the network
lifetime problem. Let G be a hard instance of the domatic partition problem,
and n denote the number of vertices in G. We will construct an artificial graph
Ĝ with 2n vertices, which is equivalent to G. The artificial graph is constructed
as follows: For each vertex i ∈ G, we define two vertices (i,1) and (i,2). We
think of the second index as defining a layer. So there are two layers. For every
1 ≤ i < j ≤ n, we connect the vertices (i,1) and (j,1) by an edge (i.e. all vertices
in the first layer form a clique). For each vertex (i,2), we connect it to the vertex
(j,1) whenever (i, j) is an edge in G or if j = i. Note that a vertex in the second
layer is not connected to any other vertex in the second layer. Hence, the graph
Ĝ has k disjoint dominating sets. Let the initial battery levels of Ĝ be (2n/k+3)B
for layer 1 vertices and B for layer 2 vertices. When each vertex has had its turn
being a source once, we call that a round.
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Figure 1: Example of the construction of Ĝ. In this case k = 2 and C1 = {3},
C2 = {2,4} are examples of disjoint dominating sets.

Claim 3.1. If the domatic number is k, the source can transmit for B rounds (i.e.
optimum lifetime is at least B).

Proof. Let C1, . . . , Ck denote the k disjoint dominating sets of Ĝ. When the source
is a layer 1 vertex, say (i,1), it first directly transmits its message to all the layer
1 vertices. This can be done as layer 1 vertices form a clique. Then the nodes
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(j,1) such that j ∈ Ci′ where i′ = i mod k transmit the message to all the nodes
in layer 2. Note that this is possible as each Ci′ is a dominating set. Next, the
strategy when the source is a layer 2 vertex, say (i,2), is to first transmit its
message to (i,1) and then the above strategy is followed.

Now note that during each round, each vertex (i,2) in layer 2 transmits ex-
actly once when it is the source. Each vertex (i,1) in layer 1 transmits exactly
once when it is the source, once when it is the relay for the corresponding node
(k,2) from layer 2, and at most 2n/k + 1 times as a relay in some dominating
set. The latter is because the dominating sets are disjoint (they form a partition),
and each collection Ci′ is used d2n/ke times. By the choice of our initial battery
levels, it is easily checked that this strategy lasts for at least B rounds.

We now show the other direction, i.e. if the lifetime is high, then there is a
small dominating set. In particular,

Claim 3.2. If the network lifetime is cB, for some constant c ∈ [1, d2n/ke], then
the domatic number is at least 2n/(ck).

Proof. Observe that a layer 2 vertex (i,2) can receive a message only via some
layer 1 node. Thus, no matter which node is the source, to transmit its message
to all nodes, the relays on layer 1 must form a dominating set. So in each round,
nodes from at least 2n dominating sets must transmit. Let s be the size of the
minimum dominating set. If the network lifetime is at least cB, this means that
the total battery power used by the layer 1 nodes is at least 2n · s · cB. On the
other hand, the total initial battery power of these nodes is (2n/k+3)B ·n. This
implies that 2nscB ≤ n(2n/k+ 3)B ≤ 4n2/kB, and hence s ≤ 2n/(ck).

Given the hardness result of [5] stated above (the stronger form) and the
equivalence of the original graph G and the artificial graph Ĝ, the two claims
imply the following result.

Corollary 3.3. The network lifetime cannot be approximated to within O(logn).

3.2 Weakness of Maximum Willingness

Consider the example in Figure 2 of five nodes in a cyclic order, in which the
batteries of nodes 1,2,4 and 5 have initial capacity of 100, while the battery
capacity of node 3 is only 10. Furthermore, consider the following determin-
istic transmission order protocol: node 1 is the first to transmit, then node 2
transmits and they continue in ascending order until all the nodes transmit a
message. Then node 1 is again the first to transmit and they continue in this way
until the first node fails due to battery depletion.

According to the MaxWill algorithm if node 1 is the source then nodes 2 and
5 are the selected MPRs, if node x, x ∈ {2,3,4}, is the source then nodes x − 1
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Figure 2: Example of the weakness of the MaxWill algorithm.
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Figure 3: Selected MPRs according to MaxWill are indicated by a circled gray
bullet.

and x + 1 are the selected MPRs, and finally if node 5 is the source then nodes
1 and 4 are the selected MPRs. Hence there will be in total 17 messages sent
before the battery of node 3 is used up. However, one can easily verify that the
best strategy to prolong the system’s lifetime is to never use node 3, unless this
node is the source. In this way there will be a total of 52 messages sent. The
weakness of the MaxWill algorithm (and the OLSR framework in general) is that
it only focuses on the 2-hop neighborhood, forcing in this example both nodes in
the 1-hop neighborhood to be MPRs. A more efficient heuristic will be presented
in the next section.
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3.3 Path-Based Heuristic

We propose an algorithm that aims to prolong the network lifetime by not us-
ing the nodes with low battery levels as relays. The relay set determined by the
heuristic chooses nodes with battery levels as high as possible.

Path selection. Given a source node s ∈ V , let the node v′ = Argminv∈V\{s}{Bv}.
Our goal is to assign a neighbor node of v′ as relay so that v′ receives the trans-
mission and hopefully is not assigned as relay. This is achieved by finding a
path from s to v′ (we know that such a path exists, since G is connected). In
graph G we may have a number of such paths, so we choose one that uses relay
nodes with the highest battery levels possible. The path selection continues by
choosing a node with the second lowest battery level and by finding a path from
s to it, and so on.

Relay assignments. Let Ps,v′ = {s, . . . , v′} be the path found in the way ex-
plained above. We assign all nodes in Ps,v′ \ {s, v′} as relay nodes. Note that a
low-battery level node may be assigned as relay if it is on a path from the source

Table 1: Some notation for the path-based heuristic
s Source node, s ∈ V
Bv Battery level of node v , v ∈ V,Bv ∈ N0

Rs The set of relay nodes for source s, Rs ⊂ V
G[V ′] Subgraph of G that is induced by V ′, V ′ ⊆ V
N(Rs) Adjacent nodes to the set Rs of relay nodes
SP(G,v1, v2) Shortest path from v1 to v2 in graph G
Note: We find all paths by assuming that all edges have same lengths (weights).

Path-Based Heuristic.
Input: See Table 1
1: Rs ← {s};
2: while Rs ∪N(Rs) 6= V do
3: v′ ← Argminv∈V\(Rs∪N(Rs)){Bv};
4: V ′ ← {s, v′};
5: Ps,v′ ← SP(G[V ′], s, v′);
6: while Ps,v′ := null do
7: V ′ ← V ′ ∪Argmaxv∈V\V ′{Bv};
8: Ps,v′ ← SP(G[V ′], s, v′);
9: end
10: Rs ← Rs ∪ Ps,v′ \ {s, v′};
11: end
Output: The set Rs of relay nodes.
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to another node. For example, cut-vertices must be used as relays no matter
what their battery levels are. By a cut-vertex we mean one whose deletion makes
the graph disconnected.

Path selection and relay assignment continues until each node in V \ {s} is
either a relay or is adjacent to a relay node. Table 1 introduces the necessary no-
tation to describe our heuristic and the path-based heuristic is given afterwards.

In the path-based heuristic, in Step 1, we initialize the relay-set with the
source s. Then we check, in Step 2, if the current relay set transmits to all nodes
in G. If this is not achieved, we select, in Step 3, the lowest-battery level node, say
v′, among the ones not receiving any transmission. Next we try to find a (short-
est) path from s to v′ in the subgraph G[V ′], where V ′ is defined in Step 4. If
such a path does not exist, in Step 7 we update V ′ by adding the highest-battery
level node in V \ V ′ until the desired path is found. In Step 10 we update the
set Rs of relay nodes by adding the intermediate nodes in the path Ps,v′ . Finally,
the algorithm terminates when all nodes receive transmissions from relay nodes.

Running time. Note that the while loop runs over all the nodes in the graph.
So the path-based algorithm runs in O(n2SP) time where SP denotes the time to
find the shortest path in a graph with unit length (weight) edges. If the nodes in
the inner while loop (Steps 6-9) are determined with a binary search, the running
time of the algorithm can be improved to O(n lognSP).

3.4 Numerical Results: Comparing MaxWill with the Path-Based
Heuristic

We denote by Algorithm 1 the MaxWill algorithm and by Algorithm 2 the path-
based heuristic introduced above.

Let ti be the number of messages sent using Algorithm i, for i = 1,2, and
let R denote the ratio t2/t1. The battery capacity Bv of each node v is uniformly
distributed over [µB−σB , µB+σB]∩Z. For our simulation purposes we generated
several graphs based on the binomial model of the Erdös-Rényi random graph.
This model generates an edge between a pair of nodes with equal probability,
say p, independently of the other edges. Therefore the lower p is, the sparser
G is. If G turns out to be not connected after the construction, another graph
is generated. Each time a message is sent, the source will be uniformly selected
from the set of nodes V . For parameter values n = 30, µB = 15, σB = 10 and
p = 0.1, the results of 10.000 simulations in MATLAB are depicted in Figure 4.

Note that in all the simulations we obtained R ≥ 1. This strongly suggests
that, for the type of graph topologies that we have generated, t2 ≥ t1 for all
possible battery capacities (Bv)v∈V assigned to the nodes. Furthermore, we have
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calculated the mean and standard deviation of R to be 1.642 and 0.639, respec-
tively. So all together this suggests that Algorithm 2 performs overall better than
Algorithm 1 and does this on average with ratio 1.642. Since at Thales they are
dealing with various types of graphs we are interested in the effect of each of the
variables n,µB , σB and p on the ratio R. The results are shown in Figures 5–8.

Figure 5: Effect of changing the number of nodes n on the ratio R.

In Figure 5 we see that if n is very small the value of R tends to be closer to
one. This is due to the fact that for a randomly generated small graph the local
approach of Algorithm 1 (looking at the 1-hop neighborhood) is in fact almost
global.

In Figures 6 and 7 we see that R is particularly high if the initial battery values
of the nodes differ a lot. Indeed, Figure 6 shows that when µB increases the ratio
R decreases and Figure 7 shows that when σB increases the ratio R increases. So
it is likely that Algorithm 2 performs significantly better if the variance of the
initial battery values of the nodes is high. This might be due to the fact that
Algorithm 2 tends to bring the battery values closer together with time, whereas,
in an unlucky case, Algorithm 1 might use nodes with low battery capacities over
and over again due to the local nature of the algorithm.
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Figure 6: Effect of changing µB on the ratio R.

Finally, in Figure 8, we see that R is almost equal to 1 for both highly con-
nected graphs and highly sparse graphs. This is because Algorithm 1 and Algo-
rithm 2 perform optimally for both fully connected graphs and tree structured
graphs (the most sparse graphs). Algorithm 2 does perform especially well if the
graph is ‘intermediately’ sparse. This is because Algorithm 1 performs subop-
timally when there are larger cycles in a non-fully connected graph (see Section
3.2).

In summary, it is likely that Algorithm 2 performs as well or better than Al-
gorithm 1 for all graph topologies and all possible battery capacities assigned to
the nodes. Furthermore, Algorithm 2 performs especially well in the case when
the variance of the initial battery capacities is high and the graph is ‘intermedi-
ately’ sparse.

3.5 LP Formulation and Solution Approach

We can also design a linear programming formulation of the problem. We simply
sketch the idea here since it is very similar to the one considered later in Sec-
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Figure 7: Effect of changing σB on the ratio R.

tion 4.2. Given a source s, we define variables xs,S for every subset S of nodes
corresponding to a valid set of relays when s is chosen as the source (we always
assume that S contains the source s). Given the battery levels Bv , one can thus
write the following integer programming formulation:

max r

s.t.
∑
s

∑

S:v∈S
xs,S ≤ Bv ∀v

∑

S
xs,S ≥ r ∀s

xs,S ∈ {0,1,2, . . .} ∀s, S such that S is a valid set of relays for source s.

Let us see why this is a valid formulation. Here r denotes the number of rounds
(i.e. where each node takes a turn being a source) that we wish to maximize. The
first constraint says that the number of times vertex v is used as a relay is at
most the initial battery level Bv . The second constraint says that for each source
s we must determine at least r sets S that are valid sets of relays. Clearly, given
any valid integer solution to this program, we can perform r rounds by choosing
the set S as relays for xs,S rounds when s is the source.
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Figure 8: Effect of changing p on the ratio R.

As is standard in approximation algorithms (see [8, 11]), we relax the integral-
ity constraints on the variables xs,S above, and consider the linear programming
relaxation (LP) where we only require that xs,S ≥ 0. This is done because linear
programs can be solved to optimality in polynomial time in the number of vari-
ables and constraints (albeit at the expense of allowing the variables xs,S to take
non-integral values).

However it is not immediately clear how to use this in our setting since the
LP above has exponentially many variables (corresponding to the exponentially
many possible sets S). To get around this, we note that while this LP has ex-
ponentially many variables, it has only polynomially many constraints. So we
can consider the dual of this LP (which has polynomially many variables, and
exponentially many constraints). Even though there are exponentially many con-
straints, this is not an major problem, as we can solve it using the Ellipsoid
method (by adding constraints on the fly as needed), provided there is an approx-
imate separation oracle for the dual separation problem. Recall that a separation
oracle is a subroutine that, given a candidate solution x as input, either outputs
a violating constraint, or certifies that x satisfies all the constraints and is a valid



Optimization of Lifetime in Sensor Networks 55

solution. By the standard equivalence between optimization and separation (see
for example [6] for more details) an α approximation algorithm to solve the dual
separation problem implies an α approximate solution for the primal LP. It can
be easily checked that in our setting, the dual separation problem is a weighted
set cover problem and hence has an O(logn) approximation. Given such a solu-
tion, one can now apply randomized rounding as explained in Section 4.2. Again,
similar ideas are discussed in section 4 and hence we omit the details here.

4 Our Approach: Within the OLSR Framework

As we have already mentioned in the introduction we are interested in selecting
the MPRs in order to maximize the network lifetime while satisfying the OLSR
constraint. The OLSR protocol relies on the selection of MPRs and calculates its
routes to all known destinations through these nodes, i.e. MPR nodes are se-
lected as intermediate nodes in a path. To implement this scheme each node in
the network periodically broadcasts the information about its 1-hop neighbors.
Upon receipt of this message each node calculates and updates its routes to each
known destination. For more details on the OLSR protocol the interested reader
is referred to the paper of [3].

Within the OLSR framework each node of the network selects its own MPR-
set. This set is a subset of its 1-hop neighbors that covers all its 2-hop neighbors,
i.e. the union of the neighbor sets of all MPR nodes contains the entire 2-hop
neighborhood. For a given source s this results in a layered network: The first
layer is the set of nodes that can be directly reached from the source s, i.e. there
exists a directed edge (s, j) if s can directly transmit to node j. We denote the
first layer by Ls(1) and we set Ls(1) = N1(s), where N1(s) is the set of 1-hop
neighbors of s. We denote Ls(0) = s. Then the k-th layer is denoted by Ls(k) and
is constructed recursively as follows

Ls(k) =
⋃

v∈Ls(k−1)

{
N1(v)∩

{
V \ ∪k−1

i=0 Ls(i)
}}
,

until all nodes of the graph are classified into layers. Among the nodes in layer
Ls(k), MPRs are selected to forward the message to the next layer, Ls(k+ 1), so
that all the nodes in the (k+ 1)-th layer receive the message.

Keeping in mind that each broadcast depletes the battery level of the nodes
that are transmitting the message, we are interested in selecting the MPRs in the
layered network so that the network lifetime is maximized. In Viennot [10] it
was shown that the problem of finding an optimal set of MPRs is NP-complete.
The authors showed that the Dominating Set Problem, which is known to be NP-
complete, can be reduced to the Multi-point Relay Problem. In Coenen et al. [4],
the authors consider the selection of master nodes that relay to their neighbors.
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In Verbree et al. [9] the authors analyze the impact of the network topology on
the selection of MPRs.

The rest of the paper is organized as follows: In Section 4.1 we give a network
instance for which the MaxWill heuristic performs at least Ω(logn) times worse
than the optimal solution. In Section 4.2 we formulate the relay problem as a
linear programming (LP) problem and we use randomized rounding to convert
the LP solution into an integral solution. In Section 4.3 we present a second
LP formulation and we implement it in Section 4.4 to compare the Maximum
Willingness heuristic with the optimal solution.

4.1 Example of the Non-Optimality of Maximum Willingness

We consider here the simpler case of a single source. We construct an example
of a graph G for which the MaxWill heuristic is at least Ω(logn) times worse than
the optimal solution.

Consider the following layer-structured graph of n = 2k+ 2k − 1 nodes, with
2k nodes in the first layer, and 2k − 2 nodes in the second layer. For the rest
of the analysis k will be treated as a parameter. We view each node in layer 1
as the pair (i, b) where i ∈ {1, . . . , k} and b ∈ {0,1}. The nodes in layer 2 are
labeled 1, . . . ,2k − 2. It is convenient to consider the binary representation of
these labels. The edges between the layers are defined as follows. A node (i, b)
is adjacent to all nodes in layer 2 whose i-th bit is b.

Suppose the initial battery of each node is Bv = B, for all v ∈ V . We claim that

Lemma 4.1. The optimum solution can transmit kB messages.

Proof. Note that for any i, if we pick (i,0) and (i,1) to be MPRs, then all the
nodes in layer 2 can be covered. This is because each node has either a 0 or 1
in the i-th position. Suppose we pick the above solution with i = 1, . . . , k. If we
call this one round, then we can repeat this for B rounds until the batteries are
exhausted.

We now show that the MaxWill heuristic can perform badly. Since the bat-
tery levels are the same, it is possible that the nodes (1,0), . . . , (k,0) are chosen.
Note that this collection covers all the nodes in layer 2 (since each label has a 0
in at least one position). Moreover, none of these sets are redundant. Indeed if
some (i,0) were dropped, then the point which has 0 in the i-th position and 1
everywhere else would not be covered. After picking these nodes as MPRs, the
battery level of these nodes is down to B − 1, so in the next step the algorithm
will pick the nodes (1,1), . . . , (k,1) as MPRs. At this point, all the battery levels
are B − 1, and the process repeats again. In this way the batteries are exhausted
in 2B steps. This gives a gap of k/2. Hence in terms of the number of nodes in
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Figure 9: MaxWill heuristic can be at least Ω(logn) times worse than the optimal
solution.

the network, this gives a gap of Ω(logn). See Figure 9.

Remark: It is possible that there are instances where the performance of the
MaxWill algorithm is even worse.

4.2 First LP Formulation

In this section we present a linear program that might be useful when the num-
ber of nodes in each layer is not too large. We first give some notation. Let
Ls(i) denote the i-th layer in the graph when the source is s, s ∈ V . Call a sub-
set S ⊂ Ls(i) of nodes a valid MPR-set if it can cover all elements of Ls(i + 1).
Let Cis denote the set of all valid MPR-sets in layer i when s is the source. Let
`s = maxv∈V dG(s, v), where dG is the graph distance in G. Furthermore, `S can
be seen as the number of layers in the graph when s is the source.

Consider the following formulation. For each valid MPR-set S in Cis , we have
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a variable xS ∈ R+ which indicates how many times this set is chosen,

max r

subject to
∑

S∈Cis
xS ≥ r , ∀i = 1, . . . , `s − 1,

∑

S:v∈S
xS ≤ Bv , ∀v ∈ V.

Note that in an exact integer programming formulation of the problem we re-
quire that xS ∈ {0,1, . . .}. Here, however, we have relaxed these integrality con-
straints to obtain a linear program which is tractable. The first constraint above
says that for each source and each layer, we must choose at least one set per
round (and hence the total number of sets chosen from a layer should be at least
r ). The second constraint says that the total number of times a node v is ever
used as a MPR is at most Bv .

If the size of each layer is at most k, then this LP has a most 2k ·n·n variables
(as there can be at most 2k subsets per layer, at most n sources and at most n
layers per graph). So, this LP might be solvable if k is not too large, say around
10 (of course, one needs to further explore this experimentally to determine up
to what values of k this might scale to).

4.2.1 Rounding

The above LP gives a fractional solution for the number of times that the sets are
chosen (because xS ∈ R+). However, we need an integral solution xS ∈ N0. To do
this, we can use the standard randomized rounding approach (see for example
[8, 11]). Here, given any accuracy parameter ε > 0, we can convert the fractional
LP solution into an integral one with (1− ε)r rounds, provided every initial bat-
tery capacity Bv and the number of rounds r are Ω(logn/ε2), where n denotes
the number of nodes in the graph. That the battery and the number of rounds
are modestly large, in the sense above, is perhaps a reasonable assumption in
practice.

Before we state and prove the result formally, we recall some standard prob-
abilistic tail bounds.

Lemma 4.2 (Chernoff Bounds, Theorems A.1.12 and A.1.13 in [1]). Let Xi, i =
1, . . . , n be independent 0-1 random variables with mean E[Xi] = µi. Let X =∑
iXi and µ = E[X]. Then for any ε > 0, it holds that

Pr[X ≤ (1− ε)µ] ≤ e−ε2µ/2,

Pr[X ≥ (1+ ε)µ] ≤
[

eε

(1+ ε)1+ε
]µ
.
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Theorem 4.3. Given any 0 < ε ≤ 1/2, the LP solution can be rounded to a feasible
integral solution where the number of rounds is at least (1− 2ε)r , provided that
r ≥ 10(logn)/ε2 and Bv ≥ 10(logn)/ε2 for each node v , where n is the number
of nodes.

Proof. For each set S such that xS > 0 in the LP solution, let yS = (1 − ε)xS ,
and let fS = yS − bySc be the fractional part of yS (note that fS ∈ [0,1]). Let
zS denote the 0-1 random variable that is 1 with probability fS and 0 otherwise.
To round the LP solution, for each set S, we independently (of other sets) choose
bySc+zS copies of S. In other words, we choose dySe copies of S with probability
zS and bySc copies otherwise.

Let us bound the probability that the battery capacity is exceeded for any
node v (this is precisely the event

∑
S:v∈S(bySc + zS) > Bv , for some v). To this

end, consider a particular node v ,

Pr


 ∑

S:v∈S
(bySc + zS) > Bv


 = Pr


 ∑

S:v∈S
zS > Bv − (

∑

S:v∈S
bySc)




= Pr


 ∑

S:v∈S
zS > Bv −

∑

S:v∈S
(yS − fS)




≤ Pr


 ∑

S:v∈S
zS > εBv +

∑

S:v∈S
fS




= Pr


 ∑

S:v∈S
zS > (1+ ε′)

∑

S:v∈S
fS


 with ε′ = Bv/(

∑

S:v∈S
fS)

≤
[

eε′

(1+ ε′)1+ε′
]µ

with µ =
∑

S:v∈S
fS .

Above, the first inequality follows since the LP satisfies,
∑
S:v∈S xS ≤ Bv and

hence Bv −
∑
S:v∈S yS ≥ εBv .

Consider two cases: ε′ < 2e − 1 and ε′ ≥ 2e − 1. If ε′ ≥ 2e − 1, then we can
bound the expression above by

(1/2)ε
′µ = (1/2)Bv ≤ 1/n10.

If ε′ < 2e − 1, then by using Taylor expansions for e1+ε′ , we can bound this by
e−ε′2/4µ ≤ 1/n2. Thus, we see that the probability of this event is at most 1/n2.
Taking the union over all the n nodes, the probability of the battery running out
for any node is at most 1/n.

Similarly, since the LP has r rounds, the expected number of rounds in the
rounded solution is at least (1−ε)r since the original LP constraint is

∑
S∈Cis xs,S ≥
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r , and hence
∑
S∈Cis ys,S ≥ r (and the expected number of copies of S that we

choose in our rounded solution is precisely bySc + E[zS] = bySc + fS = yS ).
Again, direct application of Lemma 4.2 implies that the probability that there are
fewer than (1− 2ε)r rounds is at most 1/n2. So the overall probability of any of
the bad events happening is at most 1/n + 2/n2 ≤ 2/n. This algorithm can be
derandomized using standard techniques, see for example [1].

4.3 Second LP Formulation

Here we consider an alternative formulation of the linear program. The binary
variable xr ,s,v ∈ {0,1} is defined for every round r ∈ {1, . . . ,R}, for every source
s ∈ V and for every node v ∈ V . We take V = {1,2, . . . , n}. We set

xr ,s,v =
{

1 when node v is broadcasting in round r and node s is the source,

0 otherwise.

For a node v we denote by Bv its battery level and pv the battery depletion after
the broadcasting of a message. This means that each time it transmits a message
(as a MPR or source) its battery level reduces by pv . So if a node originally has
battery level Bv it can broadcast at most bBv/pvc messages. Note that up until
now we have always assumed that pv = 1.

For a source s and for two nodes u and v we define P suv ∈ {0,1} as follows:
We set P suv = 1 if the node u is a predecessor of the node v when s is used as
source, namely if the node u is in the layer before that of v , and if the nodes
u and v are connected. Clearly P sus = 0, since the source has no predecessors.
The matrix PPP (s) = (

P suv
)
u,v , for a fixed source s, will be referred to as the s-

predecessor matrix.

To better understand the meaning of the predecessor matrix, we compute it
for a simple, concrete example, namely for the graph in Figure 10.

N2 N1

N3 N4

N5

Figure 10: The Network.
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Before we can compute P suv we need to sort the graph into layers according
to which node is the source. See Figures 11-15. Then we see, e.g., that matrix
PPP (1) (which corresponds to s = 1, Figure 11) is

PPP (1) =




0 0 1 1 1
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0




; (1)

indeed since N1 is the predecessor of N3, N4 and N5 the corresponding entries
P1

13, P
1
14 and P1

15 are equal to one; also P1
32 = 1 since N3 is a predecessor of N2.

We formulate the linear program as a feasibility problem with linear con-
straints. More precisely, we first fix a number of rounds R and we ask whether
our network can transmit messages for R whole rounds. Then we optimize over
R to find the maximum number of feasible rounds. When we implement the
algorithm in the following section we take as a first guess of the number of fea-
sible rounds the result given by the MaxWill algorithm, which is clearly a lower
bound. Then we keep incrementingR by 1 until the problem becomes infeasible.

More precisely, for a fixed R, we consider the following feasibility problem
with linear constraints:

(IP) Find xr ,s,v ∈ {0,1}, where r ∈ {1, . . . ,R}, s, v ∈ {1, . . . , n}, such that

(1) xr ,s,s = 1 ∀ s ∈ {1, . . . , n}, ∀ r ∈ {1, . . . ,R};

(2)
n∑

u=1

xr ,s,uP suv ≥ 1 ∀ s ∈ {1, . . . , n}, ∀v ∈ {1, . . . , n}, ∀ r ∈ {1, . . . ,R};

(3)
R∑

r=1

n∑

s=1

xr ,s,v ≤ Bvpv ∀v ∈ {1, . . . , n}.

Constraint (1) is the trivial constraint that node s transmits a message when it is
the source; constraint (2) ensures that every message is received by every node;
and constraint (3) ensures that the battery level of each node remains nonnega-
tive. Note that since the inequality in constraint (3) is not strict, it is possible for
the battery level of one or more nodes to be zero or to go down to zero (but not
below zero) in a feasible round, provided that every node receives the message.

Problem (IP) is a binary integer program and so it is NP-complete. Note, how-
ever, that the number of variables equals Rn2. In particular it grows polyno-
mially in n, in contrast with the linear program presented in the Section 4.2,
where the number of variables grows exponentially in n. Note that the number
of constraints also grows polynomially in n and R.
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N3 N2

N1 N4

N5

Figure 11: Source N1.

N1

N2 N3 N4

N5

Figure 12: Source N2.

N1

N3 N2 N4

N5

Figure 13: Source
N3.

N1

N4 N3 N2

N5

Figure 14: Source N4.

N1

N5 N3 N2

N4

Figure 15: Source N5.

4.4 Numerical Results: Comparing MaxWill with the Optimal So-
lution

In this section we implement the binary integer program (IP) introduced in the
previous section and compare it with the MaxWill algorithm. The implementation
was done in MATLAB using the function bintprog (with the cost vector taken to
be zero).

Performance ratios. For a node v ∈ V with battery level Bv and transmission
power pv , let RIP denote the optimal number of rounds, i.e., let RIP be the max-
imum value of R such that the binary integer program (IP) is feasible. Let RMW

denote the number of rounds that is possible if the MaxWill algorithm is used
to select the relay nodes. In Figure 16 we plot the ratio RIP/RMW for 100 differ-
ent simulations, for n = 5,10,15. For each simulation we generated a binomial
model of the Erdös-Rényi random graph, with probability p = 0.5 of two nodes
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being connected. The battery levels Bv were also random, selected uniformly
from the integers in the interval [20,30]. We took the transmission battery de-
pletion to be equal to one, pv = 1, for all nodes in every simulation.

From Figure 16 we see that for n = 5 the MaxWill algorithm gives the opti-
mum number of rounds in almost every simulation, 98 out of 100. As the num-
ber of nodes is increased the performance of the MaxWill algorithm decreases:
For n = 10 the MaxWill algorithm is optimal 58% of the time, and for n = 15
only 45% of the time. Moreover, the ratios RIP/RMW increase as n increases: For
n = 5 the maximum ratio is 1.29, while for n = 15 it is 1.67.
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Figure 16: Performance ratios: The optimality of the MaxWill algorithm was tested for 100 dif-
ferent random graphs, with n = 5,10,15 nodes. The x-axes correspond to the simulation number.
The y-axes correspond to the performance ratios RIP/RMW of the optimal number of rounds divided
by the number of rounds that are achieved using the MaxWill algorithm to select the MPRs.

In Figure 17 we assess the performance of the MaxWill algorithm when the
nodes are assigned different power levels. We consider three cases: Power level
1 where pv = 1 for all nodes; Power level 2 where, for each v , pv is randomly
selected from the set {1,2}; Power level 3 where, for each v , pv is randomly
selected from the set {1,2,3,4}. Once chosen, the power levels are fixed for all
rounds. For each simulation, we randomly generate a graph with 10 nodes and
with probability p = 0.5 of having an edge between two nodes. We randomly
assign battery levels and power levels as described above.

We see that for the Power level 3, the performance ratio is statistically close
to 1. For Power level 1 and Power level 2 MaxWill performs worse. In the case
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of Power level 1 MaxWill performs slightly worse than in the case of Power level 2.
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Figure 17: Performance ratios: The optimality of the MaxWill algorithm was tested for 50 dif-
ferent random graphs, with n = 10 nodes for different power levels. The x-axes correspond to
the simulation number. The y-axes correspond to the performance ratios RIP/RMW of the optimal
number of rounds divided by the number of rounds that are achieved using the MaxWill algorithm
to select the MPRs.

In Figure 18 we study the performance of MaxWill for graphs that have been
generated with different probabilities. The different probabilities measure the
sparseness of the graph. We took p = 0.1,0.3,0.5,0.7 and performed 50 simula-
tions for each case. The plot suggests that the performance indeed depends on
the sparseness of the graph. The sparser the graph, the better the performance
of MaxWill.

Runtimes. We compare the runtime of the MaxWill algorithm with the runtime
needed to find the optimal number of rounds RIP (which was found by solving
the binary integer program (IP) forR = RMW to RIP+1). See Table 2, which shows
the average runtimes in seconds for the simulations given in Figure 16. Note that
the runtimes depend partly on our implementation of the algorithms and no at-
tempt was made to optimize the code. For interest we also present the runtimes
of solving the linear programming problem (LP) that is obtained by relaxing the
condition xr ,s,v ∈ {0,1} of (IP) to allow xr ,s,v to take any value in the interval
[0,1].

As expected, since (IP) is NP-complete, for small n the runtimes of the three
algorithms are similar but for large n the binary integer program (IP) can take
far longer. Note the big difference between the mean and the median runtime
for (IP) when n = 15.
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Figure 18: Performance ratios: The optimality of the MaxWill algorithm was tested for 50 differ-
ent random graphs with n = 10 nodes, for different probabilities used for generating the graphs.
The x-axes correspond to the simulation number. The y-axes correspond to the performance ra-
tios RIP/RMW of the optimal number of rounds divided by the number of rounds that are achieved
using the MaxWill algorithm to select the MPRs.

n MaxWill IP LP
mean median mean median mean median

5 0.06 0.05 0.14 0.12 0.09 0.08
10 0.13 0.13 7.02 0.54 0.27 0.25
15 0.21 0.21 651.66 7.81 0.84 0.71

Table 2: Runtimes: Average runtimes in seconds of the simulations given in
Figure 16, plus also the runtimes of the (LP) relaxation of the binary integer
program (IP).

This shows that in practice, except for networks with few nodes (around 10
or less), the main role of the binary integer programming formulation (IP) is to
assess the performance of the MaxWill algorithm and other heuristics. If the net-
work is small and if the number of desired rounds to be broadcast is known in
advance, then (IP) could be solved to choose the MPRs optimally. (Note that (IP)
can only be used if you know a priori that the nodes will broadcast in rounds for
a given, fixed number of rounds.)

It is interesting to note that, if the number of nodes is small, then the (LP)
relaxation of (IP) tends to give the same number of feasible rounds, i.e., RIP = RLP

when n is small: For n = 5 we found that RIP = RLP for every simulation, for
n = 10 we found that RIP = RLP for 98 % of the simulations, and for n = 15 we
found that RIP = RLP for 75 % of the simulations.
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5 Extensions and Concluding Remarks

In this section we recall the questions posed by Thales Nederland and based
on these questions we make some conclusions and recommendations for Thales
and discuss possible extensions.

Direction 1: What would be the optimal MPR selection algorithm? With a linear
battery decrease model it should be possible to formulate this as a linear pro-
gram. How much does the optimal solution differ from the known heuristics?
Can we define easily a better heuristic than the Maximum Willingness heuristic
algorithm used by Thales?

Outside the OLSR framework. In the first part of this paper, Section 3, we
relaxed the constraint of Thales that messages have to be sent in layers. We
showed in Section 3.1 that the problem of selecting the relay nodes optimally to
maximize the lifetime of the network is NP-complete (this is also the case with
the layer constraint). In Section 3.3 we introduced a polynomial-time algorithm
for choosing the relay nodes. We demonstrated numerically (Section 3.4) that
this algorithm out-performs the MaxWill algorithm, in some cases significantly.
Therefore if it were possible for Thales to work outside the OLSR framework,
Thales could benefit greatly from the use of this new algorithm instead of the
MaxWill algorithm.

Inside the OLSR framework. In Section 4 we introduced the constraint of
Thales that messages should be broadcast in layers (the OLSR framework). In
Section 4.1 we gave a (non-generic) example to show that the MaxWill algorithm
can perform arbitrarily badly. To see how it performs in general, two binary lin-
ear programs were derived to choose the MPRs optimally. See Sections 4.2 and
4.3. In Section 4.4 the second linear program was implemented to show quantita-
tively how far the MaxWill algorithm is from being optimal. Thales could use this
to decide whether to continue using the MaxWill algorithm or whether to search
for a better heuristic. Our linear programming formulations are mainly intended
for comparison purposes (to test the optimality of heuristics) but could also be
used as algorithms for choosing the relay nodes when the network is small.

Finally we tie together Sections 3 and 4 by commenting on how the perfor-
mance of MaxWill depends on whether or not the layer constraint is included,
for the case of sparse and dense graphs.

Figure 18 shows that, within the OLSR framework, the MaxWill algorithm per-
forms nearly optimally for sparse graphs. On the other hand, from Figure 8 we
see that the Path-Based algorithm, which lies outside the OLSR framework, far
out-performs the MaxWill algorithm for sparse (but not too sparse) graphs. This
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suggests that for sparse graphs a significant improvement in the lifetime of the
network could be achieved by working outside the OLSR framework.

Conversely, in the case of dense graphs, Figure 8 shows that the Path-Based al-
gorithm does not perform better than MaxWill (even though the layer constraint
is relaxed). From Figure 18 we see that also within the OLSR framework the
MaxWill algorithm is far from being optimal. This suggests that for dense graphs
it is worth looking for a better polynomial-time algorithm even within the OLSR
framework.

Direction 2: Assume additionally that a node can choose between different
power levels. For a higher power level a node will have larger set of neighbors
to choose its MPR-set from. Can we formulate the optimization problem and
find some good heuristic to solve it (a solution being an assignment of transmit
powers and MPR-sets)? What would be the impact on the network lifetime?

A further direction of investigation proposed by Thales Nederland consists in
allowing the nodes the freedom of choosing the power levels at which they trans-
mit a message (the transmission, however, will still proceed layer by layer). This
additional degree of freedom means that the topology of the network changes
with every transmission according to the power level each node selects. Hence
the set of edges connecting the nodes is essentially an unknown of the problem
as well.

We notice that, although the transmission has still to respect the layered
structure of the graph, since we can change the topology of the graph before
sending the message, examples of the type in Figure 2 showing the weakness of
the MaxWill algorithm can be ruled out by properly tuning the power levels. In
fact, in the graph in Figure 2, it is possible to turn node 3 into a leaf by suitably
choosing its power level. Hence a possible strategy for optimizing the lifetime
of the network is to tune the power levels of the nodes so that, in the corre-
sponding graph, the transmission path generated by the Path-Based algorithm
becomes admissible within the OLSR framework.

For example, in the case of only two power levels, we could choose the power
level of each node using a threshold argument: we could define a threshold bat-
tery level such that all nodes with battery level higher than the threshold will
broadcast with the highest power level, while nodes with battery levels lower
than the threshold will select the lowest power level. This heuristic prevents
all “low battery" nodes from transmitting with the high power level, and hence
might prolong the lifetime of the network.

Here is another strategy. Assume again that all nodes can use two trans-
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mission powers (pmin and pmax). First assume that the source uses power pmin,
provided that it can transmit to at least one node. All 1-hop neighbors of the
source will be ordered according to their battery levels in a descending order.
Furthermore, consider the two extreme cases where all the nodes transmit with
the minimum power pmin or all the nodes transmit with the maximum power
pmax. Let Lmin and Lmax denote the corresponding number of relays used accord-
ing to the MaxWill algorithm. If Lmin ≤ Lmax then all nodes are assigned pmin.
Otherwise, define the fraction of nodes transmitting with power pmax as follows:

R =
{
(Lmax ∗ pmax − Lmin ∗ pmin)/(Lmax ∗ pmax), if Lmax ∗ pmax − Lmin ∗ pmin ≥ 0,
1, otherwise.

We choose which nodes transmit with power pmax according to their battery
level, starting from the highest battery level. Having assigned the transmission
powers we can now use the MaxWill algorithm to choose the relays in the 1-hop
neighborhood of the source. We continue in this way until we cover the entire
graph. Finally, we repeat this algorithm for the case where the source uses pmax

and decide between the two options.

Of course, these approaches require further investigation and are not com-
plete, but could be the start of a sequel paper.

Direction 3: What is the effect on the network lifetime problem when using a
battery model with a recovery effect?

Although Direction 3 is very interesting, due to time limitations we were not
able to extend our analysis in this direction. A very frivolous approach to the
recovery effect could be to assume that the battery is depleted by a fixed amount
for each message transmission and replenished by a fixed amount for each round
that it remains idle. Of course this is simply a first thought on tackling the
problem, but we would be very much interested to look into it in the future.
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