Electro-painting (P.P.G.)

|. Minor reformulation of the model-‘)e

The original formulation used the thickness of the deposited paint as a dependent
variable. This is difficult to measure compared with the weight of deposited paint.
Moreover the latter seems to be more directly related to the electrical resistance of the
layer of paint. .

Let j(x,t) be the electrical current flowing in the paint bath, and let ¢(x,t) be the
electric potential. Then the conservation of charge and Ohm’s law give

Vj=0 and j = —oV¢

where ¢ is the electrical conductivity in the bath.

Let w(x,t) be the weight of the paint deposited per unit area of the metal surface,
and let j, be the minimum current for paint to be deposited (representing an energy
barrier either to flocculation or surface spreading). Then '
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R(w)
where one can think of « as the weight of paint per unit electrical charge, and where

R(w) is the electrical resistance of the film of paint. The subscript + means that paint
is only deposited and is not allowed to dissolve off.

While there is some uncertainty about the correct relationship between resistance
R and the weight w, we have taken a linear law for all the analysis below <

R = pw.

Figure 1 suggests that % mey be were cccn@ele o puk R-B wf"’. o It
is not yet known whether this result is statistically significant or relevant during most
the paint deposition. Any law more complicated than a linear one would require a
careful examination of the physical chemistry of the paint deposition. Early arriving
paint globules may pack more or less efficiently, leaving smaller or larger gaps for salt
solution to conduct. There may be some temperature history. A series of experiments
would be required which carefully controlled all the variables, e.g. using a large heat
sink to control temperature. :

2. Typical magnitudes

The typical magnitudes of the variables involved are ¢ = 350V, j = 1Am™2,
jo=04Am ™2, w=4x10"2kgm™?, z=1m,t=2X 10%s, o =45%10 5 kg A~ 1s7T,
r=10"1Q"1m"!, B =10*Qmikg™!, B =ax10" (ST v}

2 A one-dimensional problem

This is a simplified version of the problem of painting the outside of an object.
Variations around the external surface will be ignored by assuming that there is just a
simple linear variation in the potential from the anode to the surface of the paint film.
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Let a potential V(t) be applied at the anode, which is at a distance L from the
paint surface. Let the potential at the paint surface be ¢ o(t) and at the metal surface 0.
Now the same current j will be flowing through the bath and the paint film, so Ohm’s
law in each gives

SR AL TN solving , | = _V__
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o ow _ 14 .
® at pw+ L/o Jo + (3-1)

Before solving this equation it is useful to note the scalings it gives. There is
an initial current surge while the resistance across the paint film is comparable with
the resistance across the bath, i.e. while the thickness is w; = L/Bo the current is
ji = Vo /L over a time t; = wi/aji = L?/aBVo?. With the typical magnitudes given
above this gives a current surge of 35 Am~? over a time of ~4s producing a paint deposit
of 1073 kgm™2 which corresponds to about a micron thickness [the size of the paint
globules?, for which the resistance law might not be well established?]. After the initial
current surge the resistance is mostly across the paint film, so that the surface potential
s ~ V.

The final weight of paint deposited is weo = V/Bjo and this takes a time ., 2
Weo/@jo. With the above typical magnitudes this is a time of 3 hours to deposit
3.5x 1072 kgm™2.

After the initial current surge and before the final approach to the steady state,
there is a simple intermediate time-scale behaviour governed by

ow = 14 with solution w = V2aVi
ot Bw
The full equation can also be solved with little effort. Non-dimensionalising the
weight with w., and the time with ., the equation reduces to
9 1 |
od [—-—-— - 1] with solution 1
w4y +
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in which 7 = w;/we = LJ'O/\/gwhich is small. Figure 2 shows this prediction for the
weight as a function of time compared with the measured deposition on a flat test plate.
For shert e (3 woaankes ) s Linend 0rd wenldugar ~Eome Lowrs
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Heat dissipation in the one-dimensional problem

The heat dissipated per unit area is (V — ¢,)j in the bath and ¢,j in the film.
During the initial current surge, these are similar at V20 /L which the typical mag-
nitudes give as 12kW m™2. This must cause considerable heating in the micron thin
paint film. Once the electrical resistance across the film dominates that across the
bath, the heat dissipation is concentrated in the film at Vj(t) = V?/Bw(t). During the
final approach to the steady state this will be Vjo, which the typical magnitudes give
as 0.2 kW m~2, which is still a lot of heat to dump into a thin paint film. It would be
useful to look at heat conducted away into the metal surface, for which one needs the
heat conductivities of the metal and the paint.
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Optimal voltage ramp in the one-dimensional problem

The initial surge in current can be damaging (electrically and through heating the
paint film — see above), so that the applied voltage V is sometimes ramped up to its
final value, usually linearly. If the current is set to run at a limiting value jma until
the voltage reaches Vimaz, we have to find the time dependence for the applied voltage
V(t) and the time taken to reach Vmaz.

Now with j = jmaz, the weight equation gives
w(t) = a(jmaz = Jo)t
and so the combined Ohm’s laws in the bath and the film give
V(t) = jmaz (Ba(jmaz — jo)t + L/0)

i.e. a linear ramp from an initial small value of jmazL/o. The time taken to reach
Viras 18 Vinaz/3%aeB = too(jo/Imaz)?. Thus if the current can run at 20 times the
minimum current for deposition, it will take 20s to reach the final voltage.

For a three dimensional car, the details of the optimal voltage ramp will depend
on the exterior shape of the car, the shape of the bath and the positions of the anodes.
The optimal ramp can however be expected to be roughly linear.

Time-dependent throw along a narrow channel

This is the problem of painting the interior of panels. Initially when there is bare
metal at a potential 0 all along the channel, the electrical current into“the wall will
decay exponentially like (40V/£) exp(—mz /¢) where £ is the channel width, z measured
the distance along the channel and V is the potential in the bath at the entrance of
the channel (equal to the anode voltage after the initial current surge in the exterior
problem). Thus the current will exceed the minimum deposition value only in a small
region near to the entrance. As paint is deposited here, however, it acts like a partial
insulator and so the potential down the channel increases. Thus the paint can extend
some distance from the entrance. Previous studies had found this important distance
that the paint can be thrown as 1/V£g/jo. Here we examine the time-dependent growth
and afterwards generalisations to narrow channels with arbitrary cross-sections.

Consider a long narrow channel between two flat metal plates with a separation £.
Let z measure the distance along the channel from an entrance at z = 0 where the
potential V is applied. Let the paint be deposited in the region 0 < z < s(t). Us-
ing lubrication ideas for the narrow channel, we have that the potential is approxi-

mately (asymptotically) uniform across the width of the channel but will vary along it, $o

#(z,t). Thus the current flowing across each of the paint films on the two surfaces is
jon = ¢/Bw(z,t). If the current flowing along the channel is j(z,t), it will satisfy the
conservation equation

o ,,. 2¢
(The factor 2 comes from the two surfaces, top and bottom.) Ohm’s law in the channel
gives j = —gd¢/dz. Hence the governing equation for the variation of the potential is
¢ _ 2 ¢
9z? = PBolw




Given the distribution of paint at one instant w(z,t), one solves this equation for ¢,
with boundary conditions

¢=V atz =0 and ¢=O=-g—g— atx:s(t)

(One of the two conditions imposed at the end of the paint z = s(t) should be thought
as a regularity condition associated with w — 0 as z — s(t).) With ¢ found, one can
then integrate the paint equation

- ff s
- = - —Jo
ot Bw +

Before solving these equations it is useful to note the scalings they give. The final
thickness of the paint will have a scale wo, = V/fBjo, which is the same as in the earlier
one-dimensional (external) problem. While the paint has a uniform final thickness in
the external problem, the paint thickness does vary along the channel in this internal
problem. The time scale to throw the paint along the channel is weo Jaje = V/Baji,
which again is the same as in the earlier external problem. The scale for the distance
the paint to be thrown along the channel comes from the ¢-equation as / Bolwe /2 =
\/Vl/2j0. The typical magnitudes give this as 0.35m. Non-dimensionalising with the
above scalings for the weight, time, z-lengths and with V for 4, the governing equations

become
8% B i ow [é _1]
+

7z = 2 T Ty

The steady state

/

In the steady state Ow/8t = 0 so ¢/w = 1, and so that the potential satisfies

9%¢ oy 04 _
-6—:”5—-1 withd¢=1latz=0 and ¢ = —azatm‘—-s

with solution ¢ = L(s—z)?  withs= V2

Thus the dimensional throw is 1/Vo£/j,, which may appear to be a factor of 1 /2
smaller than results obtained before the 1990 study group, the difference being due to
paint being deposited on both top and bottom surfaces in this analysis.

A similarity solution for short times

At short times the film is thin, while the potential is O(1), and so ¢/w > 1 except
near to the moving front at z = s(t). Hence we look for a solution of dw/ot = ¢/w.
Try a solution in the form

p=At)(s()—2)" and w=BE)(s(t)-2)"

Substituting these forms into the potential equation gives m =2 and B =1 /n(n —1).
The boundary conditions on the potential at the front z = s(t) are then satisfied
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(although they are outside the region where ¢/w > 1). Substituting into the simplified
weight equation gives n =3 and § = A/ mB?. Thus the similarity solution becomes

¢ = —1—8-(.s(t) —z) and w=1(s(t) - z)

Finally applying the condition ¢ = 1 at = 0 yields an equation for the motion of the
front

$=18/s° so s = (72t)'/*

The t1/4 growth can be understood as first a t1/2 growth of w(0,t) where ¢ = 1, with
an z?-dependence of w(z,t) which vanishes at s(t) = /6w(0, 1)

Now some experiments seem to find not a t1/4 behaviour, but instead a t1/2 move-
ment of the front. This can be explained by taking the voltage at the open end of the
channel to increase linearly in time, i.e. ¢ = kt at z = 0 (in dimensional variables
k = Vtoo/Vmaz). Then

§=18kt/s? so s = (6t) /24

‘Ad hoc’ approximation for all times

Now the distribution of the paint has a quadratic dependence on distance down the
channel in both the steady state and in the similarity solution above. It is no surprise
therefore that the computer solutions in the following section also find a quadratic
dependence for all times to a good approximation. Hence we assume

dw(0,t) 1

-1
dt w ‘

w(z,t) = w(0,8)(1 - z/s(t))’  with
To obtain an equation for the movement of the front, it was noticed that the weight
equation has a simple integral moment

d s(t) s 62¢ L 2
A zw(z,t)dr = /01:(—-—-—1> dz = 1-3s

This integral moment result is exact. If we now substitute the approximate quadratic
form for w(z,t), we obtain

d
E(%w(o,t)sz) =1- %32

Thus we have two ordinary differential equations for the unknowns w(0,1) and s(%).

Computer solutions

The simple numerical method adopted was to hold ¢ and w on a equally spaced
finite difference grid on 0 < z < zo. At each time step the previous w was used in
the instantaneous ¢-equation, which was solved subject ¢ =1 at z =10 and ¢ = 0 at
T = Tmaz by a tridiagonal inversion. The resulting ¢ was then used in a simple forward
time stepping of w.
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To avoid problems with evaluating the expression ¢/w when w = 0, a very small
precursor film was given as the initial condition w(z,0) = wo. [The alternative would
be to have a continuously deforming grid over just 0 < z < s(t), using § = —(¢/w—1)z
evaluated at z = s(t)—.] The small precursor reduces the final throw from V2 to
V2 + wy — \/wg, and thus quite small values of wq are required.

Because of very rapid initial activity in w(0,t), very small time steps are required
at the beginning, but are not needed later. Thus the time step was tied to w(0,1)
thorough 6t = w(0,t) x tol. Typical values of the numerical parameters were

foo =2, 6z=05x10"2, wy=10"3, tol=10"°

The motion of the painting front s(t) is given in figure 3. It is seen that the front
reaches 70% of its final position in a very short time of ¢t = 0-05 (corresponding to 10
minutes in the practical application), and then there is rather a slow climb reaching
90% by ¢ = 0-3. The initial rapid motion is seen to be roughly like t1/4, The prediction
of the similarity solution s(¢) = (72¢)}/4 is good to s = 0-7 at ¢t = 0-005. The ‘ad hoc’
approximation gives a reasonable prediction for all times.

Figure 4 shows numerical results for paint coming in from two open ends of the
channel. The length of the channel L has been chosen to be 1:5, i.e. the distance either
end can throw. The two ends have no effect on one another until ¢ = 0-01 when the two
regions collide. Thereafter the current into the films, and hence the rate of depositing
paint, becomes uniform along the channel. (Before the ends collide, the current into
the films #/w has a linear variation away from the ends of the channel, which is the
variation of the similarity solution.) By ¢ = 0-1 the variation of the paint along the
channel has adopted its equilibrium from

w(z,t) = w(0,t) — 2z(L — z)

although the thickness at the ends w(0,t) has only reached 40% of its final value.

Extension to axisymmetric spreading

The analysis above has been for a two-dimensional channel with no variation in
the third direction. We now consider axisymmetric spreading between two flat plates
with the paint bath being accessed through a circular hole in one of the plates. The
radius of the hole r,;, should be several times the separation of the plates £ in order
for the long narrow channel approximation to be used. To study this axisymmetric
spreading we need only modify the potential problem to

16(?.?>=£ With¢:iatr.—.:rm,-n and¢=0=§-(éatr=s

T or rar w or

The same non-dimensionalisation applies to the axisymmetric spreading as to the two-
dimensional spreading along a narrow channel.

The steady state has ¢/w = 1 so that the potential equation can be solved for

s
1.2 1.2 4 1,2
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Applying the condition ¢ =1 at r = i, yields an implicit result for the throw s

2
_ S 1, 1 min
S_\/g/\/lnrmin—i-*-i’:z

The distance thrown in axisymmetric geometry is therefore smaller by the square root
in the denominator, but this varies very slowly. Thus the throw is reduced from 1-41
to 1-22 when rmin = 0-2, to 0-91 when 7, = 0-05, and to 0-71 when rn;, = 0-008.

Because the potential drops more rapidly away from the hole in the axisymmet-
ric geometry compared to the two-dimensional problem, the steady weight of paint
deposited will also drop off more rapidly.

The time-dependence of the axisymmetric spreading is plotted in figure 3. It shows
a similar fast t1/4 initial spreading, with half the eventual distance thrown by ¢ = 0-005.

Extension to narrow channels of arbitrary cross-sections

Consider spreading along a long narrow channel in the z-direction. Let the cross-
section have an area A(z) and a perimeter C(z), which should vary only slowly along
the channel. (The channel can also be slowly curved if z measures the distance along
the curved channel.) The lubrication ideas which were used before for the long narrow
geometry now yield a potential equation (in dimensional form)

2 (4n) - 2

Bo w
Here is has been assumed that the paint is deposited evenly around the perimeter,
which can be shown to be asymptotically correct except at occasional sharp corner in
the cross-section (where is will be thicker).

In the steady state ¢/fw = jo, so that integrating once from the front at z = s
where the current vanishes

8 o [°
A(m)gg = —‘-7(—:-/ C(z')ds’

Integrating from z = 0 where ¢ = V then gives

4 dmll

H !
| _—A(:z:”) /z“ C(z')dz

Finally applying ¢ = 0 at z = s gives a condition to determine the distance thrown s

Vo [t [t o, [ [ d=" N gt
2= [ e Lo = | (f A(z")) cee)

The later form being easier for calculating the unknown s from given A(z) and C(z).

_y_
$(z) =V - =

In the case of a cone tapering to zero at an apex at z = z,
A(z) = a(z, — z)* and C(z)=c(z.—z)
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For these functions the shape integrals can be evaluated s
/" de" 1/ 1 1\ _ z'
o A(z")  al\z;—gz' =z " az(ze— ')

s z' dz" , . ey I L2 €
so /0 (/(; A($,,)> C(z')dz —/(; vy de' = 3s pv

Hence the distance thrown is identical with the original two-dimensional calculation
\/Vol]j, with the gap width of the channel £ being taken to be 2az./C = 2A(0)/C(0),

which would be the radius if the cross-section were circular.

Further problems

As recorded above, further experimental and then theoretical study is required on
the formulation of the resistance law. This may be just a temperature effect, or some
more complicated physical chemistry.

The study group did not address the production of a three-dimensional time-
dependent computer code for the external problem or for internal problems which were
not narrow channels. For handling the real complex geometries, the boundary element
method has mush to commend it, although it was argued that finite-differences could

be faster.
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Figure 1. ) + #+z-The resistance of the paint film as a
function of the weight deposited.
Figure 2. = The predicted weight deposited as a

function of time compared to the experimentally observed deposition.
Figure 3. The time-dependent throw of paint along narrow channel.

Figure 4. The rate of depositing paint as a function of position along a narrow
channel with two ends open to the bath. The different curves are for
different times.
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Postscript:

1. The ‘roof’ problem. One can analyse a general thin layer (e.g. between

a rectangular roof and the bath surface), The analysis is a simple extension

of Section 6 (or 1l) and give the (dimensional) equation

3%¢ + 3%¢ = i, (1)

where ( is the thickness (there is no factor 2 because there is no paint
deposited at the top). This to be solved with ¢ = V at the edges. The
problem where there are bare patches is the well-known ‘obstacle problem’ but
this is presumably not of interest. Without bare patches, (1) can be solved
for example by a series expansion. For a rectangle - a < x < a,

- b <y<b, with ¢ =V on the edges,

¢ =V + %i[(yz-bz)/Z + E(—l)“ancos(Any)cosh(Anx)]
o.
where A = (2nt+l)n/2b and a, = (-1)“/bA3ncosh(Ana). The smallest value of ¢

(and hence w) is at x = y = 0. A good approximation to this value is obtained
by taking only the n = 0 term from the expansion; this yields

$(0,0) =V - b?2j, (%-8/n’cosh(na/2b)). For a square, a = b and
o {

$(0,0) = V - 0.41b%j, /0.

Zl

Simpler still is a circular roof of radius b; here ¢ = V - j, (b%-x%-y?)/bo{

with a minimum value V - b%j,/4of.




2. Corners

The (possibly important) problem of painting an interior corner was not

discussed at the Study Group. Consider a corner of angle a as shown:

With j, = 0, and using the linear resistance law, the local similarity

solution is of the form

$ = tR/ (2K g(rem1/(27K)) gy o g1/ (2 Ky (pg 1/ (27K

where k = n/a < 2. Thus w(0,t) = AL "¥/(2-k)¢1/(2-%) yhere A is a geometrical
factor and L a typical length scale (distance to the anode). This suggests
that as a =+ n/2 from above, painting becomes slower and slower, while for

a < n/2 it may not occur at all for a finite time (this is the case for o = 0,
the parallel-sided box). Further work may be possible here, including the
incorporation of a non-zero radius of curvature at O.

3. The ‘long thin’ equations for w and ¢ in a channel have been analysed

by Anwar Meirmanov, who has proved existence and uniqueness of a solution; we

hope for a manuscript in due course....



