Long Term behaviour of Geothermal Reservoirs

(Camborne School of Mines Geothermal Energy Project)

A number of different aspects of geothermal reservoir behaviour were studied during the
week. These ranged from the correct formulation of the thermo-elastic deformation equations
for granite, and the possible practical methods of implementing the thermo-elastic effects
within the existing large computer codes, to the generation of simple models describing the

long term thermal effects.

We shall describe the results of the simple modelling. The approach was to consider
first how the rock cooled as a result of water moving through the network of cracks (Rock
Cooling Model) and then to consider second how this cooling might change the rock stresses
and water viscosity, and hence the effective permeability of the cracks, thereby altering the

flow pattern from inlet to outlet bore-hole (Water Flow/ Codling Interactions).

1. Rock Cooling Model

Models of how the rock cools must allow for heat conduction within the rock and for
heat transport by the water flow through the cracks. It was decided that a general model

would be too complicated so two extreme situations were considered.

1.1 Thermally isolated cracks.

Two cases were considered; first, the case of cracks that are separated by a distance
greater than the thermal diffusion length scale in the rock and, second, the case where
the thermal diffusion length is much larger than the crack spacing. These models have
been called model A and model B respectively in earlier literature. The physical problem,
unfortunately, is probably in the grey area between these (thermal diffusion lengths of 20
metres over the 25 year lifetime of the reservoir and crack spacings of around 10 metres).
Given the uncertainties about the crack spacing however, these simple models should indicate

the qualitative behaviour.

The case of widely separated cracks has been considered by Camborne before. The model
considers a single crack, on y = 0 say. The heat diffusion equation is solved in the rock,
neglecting heat diffusion in the direction parallel to the crack. In the crack, the temperature

of the water is taken to be uniform across the width of the crack and heat is advected with
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the water flow. The conditions relating temperatures in the rock to that in the water are
that the heat flux and temperature are continuous at the rock/crack surface. In the model
we take t as time, z as the distance along the crack, y as distance into the rock normal to the
crack, Ty(z,y,t) as the rock temperature, T),(z,t) as the water temperature, p as the water
density, k, x and ¢ as the usual thermal constants, V' as the water velocity in the crack and

w the width of the crack; see Figure 1.

g r; //// e / V4 P ) / e . / S // e / /) S y
g ,/ /'/ . ‘ 4 /// //,/ ,.// / ye
N S ///.« e -V - S / //" x//,'/ /
p . - Y
R v // s R'C'K‘ 4 , : ! /,/ a -
5 / e 7 S
S p ; VAR
S AR e A
Q_" /_,/ o { . ) /// p ) y 4 /, L "/, /
) ya K - AT L s
. /‘//// Ry s y »}// s // ///
v \, /// R // s yd . ” o ) o , e
Figure 1
The heat flow equation in the rock is
o7, 0T,
— e R, —
ot T oy?’

and boundary conditions on y = 0 and water temperature equations are

or, oT, B o(wV)
pch-é;— = —k, By (z,0,t), Tu(z,t)=T:(z,0,¢), Era 0.

The rock temperature is assumed to tend to some constant at infinity. In addition, initial
conditions for the rock temperature distribution and the temperature of the water at the
crack mouth are required. If the rock is initially at a uniform temperature and the water

entering the crack is at a constant temperature then an analytic solution can be found using

standard methods.



1.2 Thermally coupled cracks.

The time scale of interest, 25 years, is such that the cooling effects of water in neighbour-
ing cracks may be coupled. The temperature distribution normal to the crack is therefore of
less importance in the model. Instead, we average across the region, in a manner similar to
porous medium models. The variables of interest are then the spatial coordinates z, y, the
average rock temperature T, and the average water temperature T,,. In averaging we allow
for the fact that the heat flux from the rock is into the water but neglect the condition that
water temperature and rock temperature are continuous across a crack. This is necessary as
the rock temperature is an average value, taken over an entire block of rock. The detailed
temperature structure within the blocks is absorbed into a single heat transfer coefficient h.
This parameter should account for the thermal properties of the rock and the shape of the

rock blocks. A crude estimate for h is

Ky
h = Iz
where L is a typical length scale of a rock block and &, is the thermal diffusivity. The

averaged model for the temperature fields is

p,cr%z;f— =hTy - T), pwcuKv -VT, =-h(T, -1T,),

where K is the permeability of the rock, and v is an average water velocity. If we assume
Darcy’s law for the average water velocity, and conservation of water (zero divergence of the

mass flow rate), then we can close the system with the equations
V- (Kv)=0, v=-V4,

for the flow field. This system of equations consists of an elliptic equation for the flow and
a telegraph equation for the heat flux. The problem was solved with the rock initially at a
uniform temperature with the injected water flowing at a constant rate through uniformly
permeable rock: the solution can then be derived using Laplace transforms. A numerical

solution was also undertaken and the results are enclosed.

Water flow/Cooling interaction

Here an attempt was made to try-to understand how the variations in temperature

might influence the flow, and possibly lead to instabilities. Instabilities in the flow pattern
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might result in the geothermal reservoir being only partially mined of its heat when the
water flowing out is no longer sufficiently hot for commercial use. The worst case scenario
is similar to the fingering problem encountered when pumping water into an oil rese_rvbir to
displace the oil; the water pushes through to the production well before all the oil is removed,

leaving large pockets of unrecovered oil.

Various suggestions were made as to how this interaction of heat and flow could be
incorporated into a model. The main discussion centered on the inclusion of flow/cooling

effects in the averaged porous medium model given above.

The simplest suggested model was based on the assumption that the porous medium
type model, given above, is adequate for describing the heat and water flow and the further
assumption that the flow/cooling interaction could be included by allowing the permeability
K of the porous medium to depend on the temperature. There are two main effects to
consider. Firstly, the changes in the water temperature over fhe operating temperature
range of the reservior cause the viscosity to vary by up to a factor of four. Hence the
permeability is a function of the local water temperature T, . Secondly, the temperature
variations cause shrinkage of the rock which can more than double the expected crack width
(and hence alter permeabilities by a factor of eight assuming that the flow is laminar). This
shinkage should of course be included by considering the stress distribution within the rock.
Camborne have a large computer code that considers this redistribution; however, it takes a

substantial amount of time to run so some simple model may give additional insight..

A possible model for the shrinkage was suggested that involved treating the permeability
as a non-local function of the rock temperature. A possibility was to have a convolution of

the temperature with some kernel of the form

K(T) = [ K(z,9)T(y) v,

that indicated the redistribution of displacements due to the stresses created. There was
discussion on the possible functional form of the kernel K(z,y). To accommodate the fact
that the stress redistributes anisotropically, due to the shearing that occurs along existing
cracks, the permeability would have to be anisotropic aligned to the dominant shear direction.
One suggested simplification was that the redistribution may be on a length scale much
smaller that those of interest and therefore it may be possible to consider the shrinkage as

a function of the local rock temperature (so that X would be essentially a delta function),
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although numerical results using the Camborne code seem to indicate this may not be a very

good approximation.

There is currently on going work to consider the stability of a two dimensional flow
with either shrinkage or viscosity changes included. The analysis is similar to the oil/water
stability work but has some interesting additional features. In order to make the problem
tractable, the changes due to shrinkage or viscosity are assumed to occur rapidly at a par-
ticular temperature. This then makes it possible in each case to break the solution into
two distinct regions separated by a sharp interface and consider the linear stability of this

interface.

CPP, ADK, HO, SDH, SPT, EJH, JRL, WAG, PJH.
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