i

Danfoss: Scroll Optimization

JENS GRAVESEN, CHRISTIAN HENRIKSEN,
AND PETER HOWELL

1 Introduction

The scroll compressor consists of two plane spiral/helix running inside each other,
traditionally both scrolls are the same circle involute with constant wall thickness,
see figure 1.

When the moving scroll follows a circu-
lar orbit the chambers moves inwards and
the air or fluid trapped in the chambers is
compressed. In the standard circle involute
scroll compressor the volume of the com-
pression chambers grows linearly when we
move outwards and the compression rate
of such a compressor is sufficient for air-
condition, but not for freezers or refrigera-
tors. One could try to increase the compres-
sion rate by having more chambers, but that
would increase the leakage too. Figure 1: The standard circle involute
scroll compressor.

The task from DANFOSS was to investigate

how a change in the basic geometry of the

scrolls and the orbit influence the compressor performance and efficiency, and
then try to optimize the design.

We have not done any optimization, but we believe we have found a sound foun- -
dation for the optimization process. We can represent the geometry of the problem
in a way which leads to closed expressions for all the geometric quantities which
are interesting for the scroll design.

We have also analyzed the leakage between the compression chambers, and using
a compressible lubrication model we have determined an expression which, appart
from one integration, leads to a closed expression for the leakage.
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2 The Geometry of Plane Curves

To fix the notation and terminology we give a brief introduction to the geometry
of plane curves.

A parametrization of a regular plane
curve is a differential map x : I —
R2, such that X' (u) # O allu € I. The
unit tangent vector is t = %, the unit

normal vector is n = t, and the arc
lengthis given by s = [, [X'(1)|dt.

We introduce the frame (e, f), given
by e(u) = (cosu,sinu) and f(u) =
(— sinu, cos u). The tangent direction
¢ is then given by t = e(¢), the curva-

ture 1s Kk = %% and the radius of cur-
1 ds

vature is p = ¢ = zo. The Frenet
formulae tells that % = kn, fi—’s‘ =

Figure 2: Some geometric concepts.
o —«t, and hence t'(u) = s’ (u)g-st- =

s’ (W) (w)n(u) and likewise n'(u) =

—s" (W) (w)t(u). The centre of curva-
ture is given by ¢ = x + pn. The osculating circle is the unique circle which has
second order contact with the curve in the point x, and it has centre ¢ and radius
o. The evolute is the the curve traced out by the centre of curvature:

€ =X+ pxhy, 1)
by differentiation we have
¢ =X+ ppig + pxly = sybx + Pylx — PxSxkxtx = pxiix, 2)
from which we see that if p} > 0, then ¢ is a regular curve, tc = By, 5, = Py, and
hence s¢ = px + constant. If p) # 0 we can always obtain p; > 0 by choosing
the appropriate orientation. We can obviously invert this process and thus obtain
x as an involute of the curve ¢:

X = ¢ — (s¢ + so)te, 3)

and if c is a regular curve then py is a strictly increasing function. The following
well known result tells us that an involute is a spiral:
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Lemma 1. Let x(u) be a regular curve with radius of curvature p(u) and regular
evolute c(u). Let D(u) be the disk bounded by the osculating circle:

Dw)={xe R ||x—cw)| < p)}.

If the radius of curvature p(u) is a strictly increasing function, then the disks D(u)
Jorms an increasing nested sequence:

ur <uz = D(u1) C D(up), “4)
and the past and future of the curve is respectively inside and outside the disk:
up < uz = X(u1) € D(uz) Ax(uz) € D(uy). S)

Furthermore, choose origo O € (\,o; D(u) and let (r, 0) be polar coordinates
for the curve x, then 6 is an increasing function:

0'(u) > 0. (6)

Proof. As x(u) is on the boundary of D(u) (4) implies (5). Now let x € D(u1),
then |[x — e(u1)| < p(u1), Furthermore ¢(u1) and ¢(u3) are points on the evolute
and hence |c(uz) — c(u1)| < se(uz) — sc(u1) = p(uz) — p(uy). Allin all we have:

X — e(u2)| < [x — c(ui)] + e(uz) — c(uy)|
< p(u1) + p(uz) — p(u1) = p(u2),
which proves (4) and hence (5).

The angle between the line from ¢(u) to x(«) and the tangent t(x) is 7, but then
the angle between a line from any point in D(u) to x(«) and the tangent is in the
interval (0, ). Because of (4) this is in particular true for the point O, and then
(6) holds. O

We will later consider an orbiting curve so let us now consider a family of curves
X;(u) = X(u, t). An envelope of such a family is a curve y which is tangential to
the curve x; at the point y(¢). That means there exists a function u(¢) such that

y(@) = X(u(), 1), )

the derivative is then y'(¢) = u’ (t)%(u (1),1) + %’—f—(u (t), t). The derivative of x,
at the same point is X, (u(¢)) = %(u (1), 1), s0y (¢) and x| (u(z)) are parallel if and
only if

). oX
[—5;(14(1‘), 1) 5(u(t), z)] =0, 8)

where [uv] = W - v denotes the planar product, or determinant, of two vectors u
and v. Equation (8) determines the function u(¢) which then inserted in (7) gives
the envelope y(¢), see figure 3.
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3 Scroll Geometry

Suppose the curve x describes one side of a mov-
ing scroll wall. The side of the moving wall can
be described by

X(u, 1) =R(¥®)(x() +a@)),

where a denotes the translation and R(yr) denotes
rotation by the angle ¥r. The mating side y of the
fixed scroll wall is given by the envelope of the
family of curves X, and consequently satisfies (7)
and (8). In general (8) is an unpleasant nonlinear
Figure 3: Two envelopes. equation, but if we use the tangent direction as the
parameter on both curves, i.e., u = ¢x and t = ¢y,

then the equations are simplified to

=u+yY(@t)+nm, nelz, 9
Yn(@) = R(¥ @) (x(t — ¥ () — n7) + a(r)) (10)

If a and  are periodic with period 27, then we have y, (¢ + 27) = yu42(¢) and
we have only two candidates for the mating side of the fixed scroll wall:

yo(®) =R(¥®) (x(t — v () + a(®)),
yi(®) =Ry @) (x(t — ¥ () —7) +a@)).

We may reparameterize yi, by ¢ — ¢ + 7, and can then write
vi(t) =R () (x(r — i () + (), i=0,1, (1D
where a; and ; are defined by

_ja@® ifi =0, Y@ ifi =0, 12
ai(t)—{a(t+7r) ifi =1. wl(t)_[ilf(t—kn) ifi = 1. (12)

At time ¢ the side x; of the moving scroll wall and mating side yq of the fixed
scroll wall touch each other in a series of points:

Yo(t + 2n7) = R(¥(0)) (X(z + 2n7 — ¥ (1)) + a(@)), (13)
and at time ¢ + 7, the curves X;.4+, and y; touch in the points:

yi(t +2nm) = R(Y( + 7)) (x(t + 207 — (¢ + 7)) +a@ +m)), (14

CalsSinniiisiisei
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and between these points the two walls
bounds a chamber, (the compression cham-
ber of the scroll compressor), see figure 4.

Excluding rotation

If we exclude rotation, ie., let ¥ = 0, then
we just have .

Yo(r) = x(z) + a(r),
yi®) =x@) +a(t + 7).

Figure 4: A compression chamber.
Circular orbit

If ais a circle with centre O, with radius R, and parametrized by tangent direction,
then a = —Rf, and we have

Lemma 2. Let x be a regular curve, and put X(u, t) = x,(u) = x(u) — RE(2).
The envelopes of this family are y = X  Rf, and they have the same evolute as X.

Proof. Let ¢ = x + pxny be the evolute of x. If we parametrize x by tangent
direction, then we have X = ¢ — (s¢ + so)te = ¢ — (sc + so)nx = ¢ — (s¢ + so)f,
buttheny = xF Rf = ¢ — (sc + (so = R)f = ¢ — (sc + (50 & R))t,, and we see
that y is an involute of ¢ too. 1

3.1 Using the natural equation

If the side x of the moving scroll wall is given by some parametrization, then it
is in general impossible to find the parametrization by tangents direction. Instead
we will specify the curve by the natural equation in the form s = s(¢) where s
denotes arc-length on the curve and ¢ denotes the tangent direction of the curve. If
s is a positive, increasing and convex function, then p’ = s” > 0 and by Lemma 1
the corresponding curve is a spiral. ‘

The tangent vector t(¢) of x(¢) is by definition of ¢ the vector e(¢), and hence

and

X = / sledd = sye — / scfd. (16)
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Observe that we can find an explicit expression for the parametrization of x if
we can integrate s(¢) cos(¢) analytically, this is for example the case if s is a
polynomial or a piecewise polynomial in ¢. The mating sides of the fixed scroll
walls are given by

¥i(@®) = R(¥:(9))x(¢ — 1 () +ai(¢), i=0,1. (17)

Excluding rotation

If we exclude the rotation, then we get particularly simple equations

Yo(¢) = x(#) + a(@), y1(9) = x(®) + a(p + ), (18)
¥0(9) = (s5(@) + 53(9))e(@),  ¥1(d) = (sx(@) — 5(p +7))e(@),  (19)
Syo (@) = sx(¢) + sa(@), Sy, (@) = sx(¢) — sa(p + 1), (20)
Pyo (@) = px(®) + pa(9), Py, (@) = px(9) — pa(¢p + 1), @D

where p denotes the radius of curvature. If we assume that pg, pa > 0, (which we
always can do by picking the right orientation) then (21) implies that yg is on the
‘outside’ of x and y; is on the ‘inside’ of x, see figure 3.

3.2 The natural equation for a closed plane curve

Let s, = sa(¢p) be the natural equation for the closed curve a. It is clear that we
must have s,(¢ +27) — sa(¢p) = 27 R, where 27 R is the length of the closed
curve. It is therefore natural to put

sa(¢p) = 5a(9) + R (22)

where 5, is a periodic function of ¢ with period 27r. As a = sye — [ saf d¢ we see
that a is closed if and only if (sa Qr) — Sa(O))_e(O) — fozn safd¢ = 0. Inserting
(22) we get the equation j02 " 5af d¢ = 0 or the two scalar equations

2

2
fo 5a(6) cos(¢) dep = O, fo Sa@)sin@)de —=0.  (23)

That is, the Fourier expansion of 5, is

oQ

5a(®) = ) _(ancos(ng) + by sin(ng)). (24)
n=2
Using only a finite trigonometric polynomial of this kind we can get a closed
expression for the curve a parametrized by tangent direction. We finally note that
the case 5, = O corresponds to that of a circle with radius R, a = —Rf.

J. Gravesen, C. Henriksen, and P Howell 9

3.3 The volume of the compression chambers

Figure 5: The volume of a compression chamber.

A compression chamber is bounded by two curve segments, so we can find the
volume of the chamber as the difference between the areas spanned by a fixed
point and the two curve segments, see figure 5.

When we want to find. the area spanned by a
point and a segment of a curve, then we first
observe that the area of the triangle spanned
by r and v’ is %[r r'], so the area spanned by
O and the segment of the curve r is given by
Area = % t? [rr’]dt, see figure 6, this is also a
consequence of Green’s theorem. Observe that
a rotation around O does not change the area.
So up to a sign the volume of a chamber in the Figure 6: The area spanned by a

scroll compressor is given by point and a curve.
@) = / " o viedr -, ¢*W)+2”[( )x
v; == yi (£) y; (¢ t——f x(2) +a; () X' ()| dt
2 Jy : 2 Jo—yie l ]
1 [ot+in , 1 pe—vi@)+on
=2 / i) y,()1ds — - / x(t) X (0)] s
b 2 Jo-vi) (25)

1
- E[ai (@) (x(¢ — Vi (P) +27) — x(¢ — i (D)) ]-

Excluding rotation

Without rotation we have
1 ¢+2m
vi(p) = 5/¢ (VAGNAQI B [x(2) X' (1)]) dt

1
- 5 [3:(@) (x(@ +27) —x(#))]. (©26)
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Once more we have that if sx(¢p) is a piecewise polynomial and 5,(¢) is a finite
trigonometric polynomial, then we have v; (¢) on closed form.

3.4 Circular orbit

If we specialize to the case of a circular orbit a = —Rf, and no rotation, then
ap — a and a; = —a and hence
y(@) = x(t) F RI(?), 27)
Y (®) =x(t) £ Re(r), (28)

[y®) ¥ ®] = [x(1) X ()] + R[x(®) e()] F RIE() X (1)] — R*[£(2) e(®)]
= [x(1) X' (1)] R(;ld—t[x(t) — ()] - X' () —£@)])
+ R[X (1) £()] + R?
= [x(®) X' ()] R%[X(t) — ()] = 2R[X (1) £(2)] + R

=x@®OX@)] =+ %R[f(t) x(t)] £ 2Rs,(t) + R?

py = pxE R (29)

_ R¢ 30
SY_SX+{—R(¢+JT) (30)

The volume of a compression chamber is given by

1 o+2n )
v(p) = 3 / (y@) ¥y ] — [x@) X (0)]) dt
¢

F %[a(cp) (x(¢ +2m) — x(9))]
1 o+om d / 2
= :}:-—/ (—~R[f(t) X(®)]+2Rs,(r) £ R ) dt
2 é dt
£ ZR[19) (x(¢ +2m) — x(9))]
= % (RI£ +2) x(p + 2m)] — RIE) x(@)]
+ 2Rsx(¢p + 27) — 2Rsx(¢) £ 27 R?
+ R[f(®) (x(@ +2m) - x@))))
= 7R £ R([) (x( +27) — x(@®)] + 8550 +27) = 5x(®)) (3D
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3.5 The other side of the wall

So far we have only considered one pair of mating sides of the scroll walls, but
in a real world scroll compressor we have of course two pairs of mating sides. In
this section we will address the problem of defining both sides of the scroll wall.

Constant wall thickness

It seems natural to try to:make walls of constant thickness as in the case of the
standard circle involute scroll scroll compressor, see figure 1.

Let the curve describing one side of the moving scroll wall be x(¢), with the
natural equation s = sx(¢). We can write X = ¢ — (s¢ + sg)te, where ¢ is the
evolute of x. Any curve X parallel to x is also an involute of ¢, thus

X=1c— (s¢+ s1)te =X — wng = x — wf, (32)

where w = 51 — s is the distance between the curves. The thickness w has a sign
and if w > 0, then the parallel curve X is on the ‘outside’ of x. The curvatures
are related by the equation pz = px + w, and as p = dis_, the natural equation
s = sz(¢) of X is given by sg(¢) = sx(¢) + we. Observe that it is only in the case
of parallel curves we have such nice relations. If we putX(¢) = x(z) + w(®)ng(z)
with w(z) a non constant function, then ¢ # ¢, and we have do not have any
explicit formula linking the curvature of x and X.

Figure 7: A scroll compressor with a moving scroll of constant width.

We now let the wall follow the orbit of a, and restrict ourself to the case of a
circular orbit, a = —Rf, and with constant width w > 0. In that case we have a
situation as in figure 7, where we see the moving scroll wall bounded by x and X
in the channel defined by the fixed scroll wall. By Lemma 2 we have that y;.y has
the same evolute as x and Yo;% has the same evolute as X, in particular are ¥1.x and
Yo% parallel curves and we have the following result:
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Lemma 3. If a scroll wall of constant width w is moved in circular orbit with
radius R, then the channel of the fixed scroll has constant width, w + 2R.

The fixed scroll wall will in general not have constant thickness, the following
result tells us when this happens:

Proposition 4. Let x and X be the sides of the moving scroll wall which moves in
circular orbit and let y = y1.x and Y = yo.5 be the mating sides of the fixed scroll
wall, as in figure 7.

If the curves are spirals in the sense that the arclength of any of the curves is
a strictly increasing convex function of the tangent direction, then the following
statements are equivalent:

1. The thickness of the scroll walls are constant.
2. The curves X and X have a common simple closed convex evolute.
3. The curves 'y andy have a common simple closed convex evolute.

4. The curves x, X, y, and Y have a common simple closed convex evolute.

Proof. We will assume that all four curves are parametrized by tangent direction
and that the circular orbit is given by a = —Rf.

Assume that the wall thickness of the moving scroll wall is constant, then all four
curves X, X, y, and ¥ are parallel curves by Lemma 3, and hence they have a
common evolute ¢. That ¢ is convex, i. e., has nonvanishing curvature, follows
from the fact that the scroll sides are smooth curves.

Suppose that the fixed scroll wall has constant thickness too, then the curve which
together with ¥ defines the fixed scroll wall is of the form ¢ > y(¢ + v). As the
tangent direction is the same and the curves are spirals, we must have v = 2.
That means that the curve ¢ > y(¢ + 27) is parallel to ¥ and hence also to y, but
as parallel curves have common evolutes we must have that ¢(¢) = ¢(¢+2x) and
the common evolute is closed. As ¢ + 7 is the tangent direction on the evolute we
have that it is periodic with period 2 when parametrized by tangent direction, but
then it can not have any self intersections and it must be a simple closed convex
curve.

We have now shown that 1 = 4, and we clearly have that 4 = 2, 3. So we need
only to show that 2 = 1 and 3 = 1. Now assume that x and X are involutes of a
common simple closed convex curve ¢. By Lemma 3 we have that all four curves
are parallel so we need only to show that y and the curve ¢ — y(¢ + 27) are
parallel. Asy = ¢ — (sc + sg)f we have that

Y@ +27) — y(@) = —(se(p + 27) — 5e())f(9) = —Lcf(9),
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where £ is the length of the closed curve ¢. The tangent vector of both y(¢p +2m)
and y(¢) are e which is orthogonal to f, and we see that y(¢+27) and y(¢) indeed
are parallel, and that the distance between them are £,.

To prove that 3 = 1 we only have to interchange the role of the moving and fixed
scroll wall. 0

The lemma above gives us a way of constructing scroll compressors with constant
wall thickness, unfortunately this does not give us much compared to the standard
circle evolute scroll compressor. As X(¢p +2m) — x(¢) = —Lf(¢), the expression
(31) for the volume of a compression chamber reduces to

v($) = 7 R £ R(sx(p +270) — 5x(6h)).

Furthermore if ¢ is the closed evolute of x, then Sy = pPx = S¢ + o, SO

¢4 p+4m ¢-+2m
/ se(r) dt = / (set —2) + £c) dt = / se(t) dt + 27 L,
o+2m o2 ¢

and hence v(¢ + 27) — v(¢) = 27 .. We see that only the size, not the shape of
¢ matters, for the ratio between the volume of the chambers.

We can of course still have that only one of the scroll walls has constant width,
but we would still have a problem. The volume function (31) for the two pairs of
mating sides of the scroll walls will in general be different, and the compression
rate would be different too.

Reflecting a pair of mating wall sides

The standard circle involute scroll compressor in
figure 1 has the property that the two scroll walls
are the image of each other by a reflection in a
suitable point. By this reflection the two pairs of
mating sides gets mapped into each other, see fig-
ure 8.

We can convert this property to a principle by
which we can construct the whole of the scroll
walls once we have one pair x(¢), y(¢) of mat-
ing sides. In order to define the reflection which
will give us the other pair of mating sides we need  Figure 8: Reflection in a point.
the centre of the reflection, and we only need the

image of one point in order to determine the centre point.
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We are given one side x;(¢) = x(¢p) — Rf(¢) of
the moving scroll and the mating side y(¢) =
Xp—r(¢) of the fixed scroll wall. We want
the reflection to map the point y(27) to the
point Xo(r) — df(sw) which we note lies on
the normal to xo opposite y, see figure 9. The
centre point C is determined by the equation
2C = y(2m) + xo(r) — df(), and then the
other pair of mating scroll walls are determined
by the equations Xo(¢) + y(¢ + 7) = 2C and
Figure 9: Reflecting a pair of mat- y(¢) + Xo(¢ — w) = 2C, i.e..

ing sides in a point.

X(¢) = (y@n) +x(7) + (R — d)f(®)) — y(¢ + 7) (33)
¥(¢) = (y@r) +x(7) + (R — d)f(w)) — x(¢ — 7) (34)
We have y(¢) = X3 (¢) = x(¢) + REf(¢), and a short calculation shows that
V(p) =Xp(¢p — 27). If x, X : [7,2N7] — R andy, ¥ : [27, 2N + 27] — R?,

then at time ¢ € [0, 27r) we see that the curves X, and y touch each other in the
points

n=12,...,N ift =0,

y(t + 2nm) = x(t + 2nm) + RE(), {n:l,z,...,N"‘l if t #0,

and the curves X; and ¥ touch each other in the points

n=12,....,.N ift=m,

~ _x _ £(2), :
y(t + 2nm) =X(t + 2nw — 2m) + RE(2) {n=2,3,-~,N ift#m.

Remember that the two pair of mating curves x, y and X, ¥ are the reflected images
of eachother and under this reflection we have the correspondens x(¢ + 2nmw) <
Yt + 2n 4+ 1)7) and X(¢ + (2n — 1)7w) <> y(t + 2n7w). This means that the
sequence of chambers between X, and y at time ¢ is the same as the sequence of
chambers between X, and ¥ at time ¢ + 7, we have in particular that the two
‘channels’ of the compressor have the same compression rate, which obviously is
a desirable property.

3.6 Examples

We have considered three different natural equations: s = qbzlwhich gliveés1 the
circle involute, and two others, s = ¢? + ?16‘1’3 and s = ¢? — %¢3 + 55¢"- In
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Figure 10: The three examples of scroll compressors.

all three cases we let X,X : [7,87] — R? and y,¥ : [, 10x] — R? such that
we at time ¢ = 2n7, n € Z have three chambers, with volume v(27), v(47), and
v(6rr), where v is given by (31). We are interested in the ratio of these volumes
so we have calculated Ay = v(67)/v(4w), Ay = v(dm)/v(2r), and the overall
volume ratio A = v(67)/v(27). Another important quantity is the stroke volume
which is v(6r). We can always increase this by scaling the compressor so we are
really interested in the normalized stroke volume V = v(67)/ D* where D is the
diameter of the compressor. To simplify matters we use |y(107) — y(9m)| as an
estimate of D. Finally we calculates the leakage coefficient:

2 Vo Vo\” V1>y
I = €| — — 1} — (=] |d,
/o J_(Vl) [(Vl) (Vo ]
see (71), where k(1) = py(S;r—t) —-px(&lt__t), Vo(2) = v(6mr —1), Vi(t) = v(dm —1),

and y = 1.4 as in section 7, page 28. The results are summarized in table 1 and
in figure 10 we have drawn the three compressors.

() R| d | A | M| AT l

&> 4228|143 |1.75|249|0.085 | 0.64

2 P* + 55¢° 6| 2 |1.68|2.14|3.60|0.041 |0.67
¢? — 0% + 450" | 6| 2 | 225|276]621 0016 1.13

Table 1: The performance of the three scroll compressors. The value d = 27 — 4 &~ 2.28
is the one which gives the circle involute scroll compressor constant wall thickness.

We should stress that example 2 and 3 are arbitrary and only are meant to illustrate
that it is easy to calculate these important numbers. The calculation was done
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using Maple® and except for the integration in the determination of it is possible
to get the result on symbolic form starting with a natural equation on polynomial
form, say s = co + €16 + ©2¢* + c3¢° + ca¢p*. We will not present the result
of that calculation, but the possibility of doing this makes an optimization and a
sensitivity analysis much easier.

If we compare the natural equation in example 2 and 3 with the natural equation
s = ¢? for the circle involute it is clear that s is changed most for large values
of ¢ corresponding to the outer part of compressor. It would be obvious to try
to change the interior part of the compressor, because then the normalized stroke
volume is kept fixed, while the volume ratio may change.

4 Leakage Between the Compression Chambers

Figure 11: Schematic diagram of the gap between two chambers.

Ideally, the two halves of a scroll compressor remain perfectly in contact as they
rotate. In reality it is not practical to machine them accurately enough for this to
be the case, and instead there is a narrow gap. Typically the gap is around one
micron across; this may be increased by wear and/or poor machining, and it is
known that if it reaches around eight microns, the compressor becomes useless.

In this section we analyse the flow through this gap in an attempt to determine the
leakage between neighbouring chambers in the compressor. We use compressible
lubrication theory, using the fact that the gap has a very small aspect ratio. A
schematic diagram of the geometry is given in figure 11. Here the gap, of typi-
cal thickness d and length L, separates two adjacent chambers containing gas at
pressures Py and P;. A local coordinate system is adopted with x pointing along
the channel and y pointing across it. With respect to these coordinates we denote
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Property Symbol Approx. value Units
Viscosity w 107> Pas
Density 0 1 Kgm™
Thermal diffusivity & 2.5 x 1072 Jm~ls~IK!
Specific heat Cy 103 JKg 1K1
Gap thickness d 1076 m
Contact length L 1072 m
Rotation frequency » 50 s71
Pressure drop AP 108 Pa

Table 2: Estimated parameter values for leakage between cells in a scroll compressor.

the bottom and top of the channel (both of which are moving as the compressor
rotates) by y = h1(x, t) and y = ha(x, t).

Some typical parameter values for the flow are shown in table 2. From these we
can extract the important dimensionless parameters that determine the character
of the flow. Firstly, the inverse aspect ratio of the channel is small,

d 4
e=—~107% (35)

which will enable us to simplify the governing equations considerably. Next we
deduce a typical velocity for the gas from a balance between the pressure drop
and viscous drag:

d>AP
U= .
nL
Another dimensionless parameter is the ratio between this and the velocity due to
rotation of the compressor:

wL _ ,u,a)L2
U  d2AP

Now we calculate the reduced Reynolds number using U as the velocity scale:

Q= ~5x 1072, (36)

_ pU Le? _ pd*AP
T op pAL?
Since Re* is small, we can safely neglect inertia effects in the channel. We can
also interpret Re* as the square of a typical Mach number:

Re* ~ 1074 (37)

U? , AP

Re* = —, Wherec¢® = —,
c
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and hence deduce that the flow is very much subsonic. Similarly, we calculate the
reduced Peclet number using U as the velocity scale:

_ pcyULe? _ pCod* AP

~ 10-4
k| ukl? ~ 107

Pe*

It is no accident that Pe* ~ Re™* since their ratio, the Prandtl number Pr =
k/(ucy), is approximately one for air.
We can immediately deduce a typical rate of leakage using the velocity scale U.
The rate at which gas is lost through the channel is of order Ud, and so the cumu-
lative loss over a cycle is typically Ud /w. We simply have to compare this with
the original area of a chamber to obtain the relative loss of gas due to leakage:
d*AP €

relative loss = m = o (38)
The values given in table 2 suggest that this is rather small: about 0.2%. However,
itis clearly highly sensitive to increases in d, and if we setd = 8 ym, then the typ-
ical relative loss is dramatically increased to around 100%. This is in encouraging
agreement with the experimental observations noted earlier.

4.1 Governing equations and boundary conditions

Our governing equations for the flow are the compressible Navier-Stokes equa-
tions (see [1])

Pt + div(pu) =0, (39)

D .
,03? = —grad p + (A + p)graddivu + uVu, (40)
where u and p are the velocity and pressure fields, A is the dilatational viscos-
ity and D/ Dt is the usual convective derivative. Coupled to these is the energy

equation (see [1])

DT
pey— -+ pdivu = kVAT + &, (41)

where O is the dissipation,

® = A(divu)? + &

. . 2
= (?_”1 - Qi‘i) , @2)

dx;  Ox;
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Finally, the system is closed by specifying an equation of state. Treating the air as
a perfect gas, we set

P = pRT, (43)

where R = ¢, — ¢, is the gas constant. It is convenient to substitute (39) and (43)
into the left-hand side of (41) to obtain the energy equation in the form

D
— L _ 2P V2T 1 . (44)

On the upper and lower boundaries of the channel we specify the velocity u =
(u, v) of the gas to be the same as that of the channel wall:
oh; oh;
u=uj, v=-—+u—, ony=hi(x,1t); i=1,2. (45)
at ox
Here the horizontal velocity u; and position %; of each wall are determined by
the prescribed shape and motion of the scroll. We now integrate (39) with re-
spect to y and apply the boundary conditions (45) to obtain an integrated equation
representing total conservation of mass:

hy ho
my+q, =0, wherem = / pody, q =/ pudy. (46)
hy h

The quantities m and g represent respectively the mass density of fluid in, and flux
of fluid through, each cross-section.

As boundary conditions for the temperature we assume that the channel walls are
thermally insulated, so that

oT oh; oT
— =———ony="hx,1); i=1,2. 47)
ay 0x 0x

We also have to match the solution in the channel with the prescribed pressure in
the chamber on either side:

p—>Prasx - —00, p— Pyasx — 4o00. (48)

4.2 Nondimensionalisation and leading-order equations

In nondimensionalising the equations (39—44) we utilize the slenderness of the
geometry and the difference between the velocity scales for the fluid and for the
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compressor. Thus we set

4
~

x=Lx', y=dy, u=Ud, v=elUV, t=_—,

PT
pey

(49)

> g |

hi=dhi, wi=wLu,, p=APp, p=pp, T=

Henceforth we drop the primes and proceed with the dimensionless variables. The
Navier-Stokes equations (40), up to order Re* and €2, reduce to the lubrication
equations (see [1])

Py = 0, Uyy = Dx. (50)
Thus,
Px o
u==-y + Ay + B, (51)

where, using the dimensionless version of (45), A and B are found to be

_ Rz —u1)  px(hi+h) g — S2(houy — hyuy) 4 P
B h 2 0T h 2
setting A to be the channel height:

A (52)

h =hy — h;.

Now consider the dimensionless version of the energy equation (44) and thermal
boundary condition (47), taking only the terms at leading order in €:

1 )4
;—_—1 (SZpt + up, + vpy) — )—;i—f ; (SZ,ot + up, + v,oy) — uf, + 0(?)

= Fi? (Tyy + 0(62)) . (53)

Ty = O(¢?) ony = hy, hs. (54)

Now we use the fact that Pe* is much smaller than one to expand T as an asymp-
totic expansion in powers of Pe*:

T=Ty+Pe*Ty +....

Notice that, since €? « Pe*, it makes sense to keep terms of order Pe* while
neglecting those of order €2.
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To lowest order in Pe*, the Neumann problem (53, 54) simply tells us that

But from (50) we know that p is also independent of y to leading order, and thus
py must likewise be zero. A relation between the as yet unknown functions p(x, t)
and p(x, 1) is obtained from the solvability condition for the inhomogeneous Neu-
mann problem satisfied by Tj. The resulting equation is

P _ .
Qp; +up; — &t iipx) = (v = Du3, (55)
where ~ denotes the cross-sectional average:

_ 1/h2
L= -dy.
h Jn,

Now we simply substitute in the analytic form (51) of u to obtain
Y h?
@(p—Lp ) =00 (p, 2, (56)
P 12 o

A second equation linking p and p is obtained by substituting (51) into the di-
mensionless form of (46), the result of which is

$2ph(u1 +u) ppxh>
2 12

Q2(ph); +qx =0, whereq = (57

4.3 Solution in the quasi-steady limit

Equations (56) and (57) form a closed leading-order system for o and p; recall
that w1, up and h are prescribed functions of x and 7. They can be simplified
further by taking the quasi-steady limit Q — 0. Then, from (56) we deduce that

a (p _
= (5) = oY

which implies that the gas is isothermal. So in (57)we canset p = p/(T(y — 1))
where T is constant. Thus the flux

h3ppx

1= "1y - 9
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is a function only of . Now we simply divide by #> and integrate with respect to
x from —o0 to +00, applying the matching conditions (48), to obtain

2 2 00 —1
g= P10 (/ d_j) . (60)
24T — D\ ®

This tells us the flux, i.e. the leakage, through the channel, and how it depends on
the pressure in the chamber on either side and the geometry of the channel.

Since the minimum gap thickness is very small, the integral in (60) is dominated
by the behaviour of 4 near its minimum. In a neighbourhood of this point, we can
approximate s by a quadratic function (which in general it will be locally) say

/c(t)x2
h=d(t)+ >

where « is the difference between the curvatures of the two channel walls at their
closest point. Then

®dx 3
f_oo B 4d522c
5 Conservation Equations for the Chambers

Now we consider the conservation of mass and energy for a single chamber of
gas. Since the Reynolds number on the scale of a chamber is large, it is common
practice to assume that the gas in each chamber is turbulent and thus well-mixed.
Hence we can associate a spatially-uniform temperature 7 (¢) and pressure P(r)
with the mass M (¢) of gas in the chamber, which has a given volume V (¢).

Firstly, note that the ratio of kinetic to thermal energy is of order
kinetic energy  pw?L?

= Q?Re* « 1.
thermal energy AP

Therefore we neglect kinetic energy throughout, so that the internal energy in the
chamber is simply

E = Mc,T. (61)
The internal energy is changed due to:

e The work done by changes in the volume V of the chamber which, recall,
is assumed to be a prescribed function of time. The work done is given by

—PdV/dr.
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e The energy transported into and out of the chamber through the gaps on
either side. Assuming the flow through these gaps is adiabatic, the energy
transported by a mass flux g is g H, where H is the enthalpy, equal to cpT.

e Dissipation and energy losses to the external environment, which we denote
by O.

Putting all these together, we obtain

dE . » dV :

-d_t = _P—c-l'_t— +qicpT; — qgocpT + O, (62)
where the subscripts i and o correspond to flow into and out of the chamber re-
spectively. Notice that the temperature of gas flowing out of the chamber is the
same as that of the gas in the chamber, 7.

Henceforth we neglect Q, although thermal interaction with the surroundings
might be included in a more refined model. Therefore, substituting (61) into (62)
and rearranging, we obtain an ordinary differential equation relating P and T':

VdP — yR(GT, o) PdV 63)
dt =ynlgili — g, Y i

Next we consider conservation of mass for the chamber. This simply states that
the mass change is equal to the flux into the chamber minus that out:

aM
2 =4 9o (64)
But M = pV, where the density p is given in terms of P and T by using the
equation of state (43). Thus (64) can be rearranged to a second equation relating
Pand T:

dT dP T dV RT?

T
_— = — —_—,————— s . 65
dt P dr + vV dt PV (gi — q0) (65)

Now the idea is as follows. Given the pressure P and temperature T in two neigh-
bouring chambers, and the geometry of the gap between them, we can evaluate the
flux from one to the other using (60). Then for each chamber we have the two dif-
ferential equations (63, 65) for P and T, which are coupled to the corresponding
equations for the neighbouring chambers by the fluxes g on either side.
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Po1, T

qn—1 qn

Figure 12: Schematic diagram of the coupling between neighbouring chambers.

6 The Coupled Problem

The situation is depicted schematically in figure 12. We have a series of chambers,
in the n'® of which the gas is at pressure P, and temperature 7). The flux between
the n® and (n + 1) chamber is denoted by g,, with the sign convention that
qn > 0if gas flows from chamber n to chamber (n + 1).

From the theory of section 4, we know that in each of the gaps between the cham-
bers the temperature is constant, but the value of that constant is determined by
the sign of g: if g, > 0 then the gas transported by g, has temperature T,,, while if
gn < 0itis at T,1. Thus, when we redimensionalise (60) we obtain the following
expression for gy :

2 2 5/2 .
(Pn_Pn—i-l)d/‘/E{l/Tn if Py > Ppiq,

. 66
97Tx/§,u,R l/Tn—I—l lan <Pn+1- ( )

gn =

Similarly, when we write down the conservation equations (63, 65) for the nth
chamber, whether each of ¢g,—1 and g, qualifies as flux into (g;) or out of (q,) the
chamber depends on its sign. The resulting equations can conveniently be written
in the form

P )/R + + VVn
= {an 1T = @ Tt + 41 Tt = T) + 4 (T = T} = 5,
67)

T, (y — DV, R
=— + T, — vag,T,
T, V. PV, {Qn n— VYqnint1

+( — DgpT, + Vqrj-_l(Tn—l —Tn) + Vqu(Tn-{—l — Tn)}a (68)

where g™ denotes the positive part of g:

+ ) q ifg>0,
7 =10 ifg <.
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To solve the dynamical system (67, 68) we need to apply “end conditions” at the
outermost chambers. Suppose there are N chambers altogether, with the first and
Nt open to reservoirs at given pressure and temperature Py, Py and Ty, Ty. Note
that Ty and/or Ty need only be specified if Py > P; and/or Py > Py_—1, so that
gas flows into the adjoining chambers. We also have to specify P, and T}, for
n=1,...,N —1atr = 0. Finally, there is a complicated closure condition
associated with the periodicity of the motion. Roughly speaking, it is clear that
after a complete cycle, what was the n™ chamber has now become the (n + 1)
chamber. The way in which this condition is implemented in practice should be
made clear by the following outlined solution procedure.

1. Suppose P, and T, are givenatt =0Oforn=1,..., N.

2. Integrate the coupled ordinary differential equations (67, 68)
forward through one complete cycle, using the specified values
of Py, Ty, Py, Th.

3. Set
Vn Vn—l
Py = Py
Tn ] pew Tn-1 / old

4. Go to step 2.

The desired final result is a periodic solution, in which the “new” and “old” values
in step 3 above are identical, that is

Va(2) Vo1t +7)

periodic solution = P,(t) | =\ Pim1t+171) |},
T, (¢) T,1(t+7)

where T = 27 /w is the period of the motion. However, when there is strong
coupling between the chambers it is far from clear that this periodic solution is
unique or stable. Indeed, for a high-dimensional nonlinear dynamical system such
as this, we might expect to see extremely complicated dynamics in general.

6.1 The small coupling limit

If the leakage is relatively small (which it should be for any worthwhile compres-
sor), we can perturb about the zero-g solution (in which mass and entropy are
preserved in each chamber)

Y V }/—1
P, =Py (3;-‘1) T =T (—9) . 69)

n
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Then the lowest-order fluxes are obtained by substituting (69) into the expression
(66) for g,.

Interestingly, if the compressor is in a periodic state, we only need to find g
to evaluate the total leakage: in its first cycle, a chamber gains —q; and loses
—qo- Then, in the next cycle, it loses —q; and gains —g,. Over the lifetime of a
chamber, all the intermediate fluxes cancel each other out, so only go remains. In
the small-g limit, this is readily evaluated:

oo ()G )]
Ir/2uRTy \Vi Vi VW) I
Thus, assuming that d and the other parameters in (70) are constant (and beyond
our control), we obtain a functional form of the total leakage:

. T VO VO Y V1 Y
total leakage oc / ._/0 ﬁ(ﬁ) [(Vl) - (VO) :, dt. (71)

We can use this functional as part of a cost function in evaluating proposed new
compressor designs, for all the variables on the right-hand side of (71) can readily
be evaluated for any given scroll geometry. Without performing any detailed cal-
culations, we can immediately deduce some desirable design properties that will
reduce leakage:

e The contact should be as flat as possible, i.e. ¥ should be minimised.

e The volume should be reduced gradually on the first cycle. This follows
from the observation that only gy is relevant to the total mass loss.

7 Numerical Results

In this section we present some preliminary numerical simulations of the system
(67, 68). We consider the simple configuration shown schematically in figure 13.
Here, at the beginning of the cycle (diagram 1) the shaded volume of gas Vp is
taken in from the atmosphere. As V; decreases (diagram 2) the gas is compressed
until the cycle is completed (diagram 3). Then the gas is released into a reservoir
of constant volume V; (diagram 4). The idea is that we run the simulation through
several such cycles and see what pressure we can achieve in the reservoir; this
seems like a good measure of the efficacy of the COmpressor.
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Figure 13: Schematic diagrﬁm of the compression of a single chamber (of volume V;)
which opens up into a reservoir of volume Va.

The coupled system for the temperature and pressure in the two chambers is

P YR
— = —1goT o — T H(Py— P
PPV, {90T1 + (To — T)qoH (P, 1)

V
~ @B+ (T~ T)q H(P, — Py)} — _sz (72)
1

Ty (y -V R
— = + [T —ya b+ (v — Dgoy
PV

T Vi
+v(To — T1)goH(Po — P1) + y(T — T1)q  H(P, — Py}, (73)
P YR
— =" IaT Ty — —
=BV {1+ (11 — T)q H (P Py}, (74)
Tz R
= -1 — -
= B, {v = DD+ v (T — )G H(P, Py}, (75)

where H is the Heaviside function and

N 1 1 1
go = ——=—— (P2 — P? {———{—(————)HP —P }
o3 R ) T T (P — Py)
S (76)
VAP 11
1= ————(P[ =P {—+|=—— =) H(P, — P)!.
M= oz 2){2"2 (T1 Tz) i 2)}

With the ambient temperature 7} and pressure Py given and specified chamber
volume Vi (z) and (constant) reservoir volume Vs, (72-76) is a well-defined prob-
lem for {Py, P, Ty, T>}. We initiate the calculations with Pr=P =P, T =
H=T,.
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As outlined in section 6 at the end of each cycle we perform a replacement al-
gorithm corresponding to (i) a new chamber of atmospheric gas forming in the
“new” V1; (if) the “old” V; discharging into V5. For the latter we find the new val-
ues of P, and 75 by setting the mass and energy in V5 after the discharge equal to
the total mass and energy in V; and V, immediately prior to the discharge. Thus,
after the n™ cycle we set

Pi(nt+) = Py,
TIi(nt+) = To,
[PV + PV,
P = =% -), (77)
»(nt+) VY :I (nt—)

I(nt+) =

[ (P V) + P2V2)T1T2] ()
| PiT + PV T '

In all the calculations to follow the parameter values are set as follows,

uw=1, R=1, y =14, k=1,
Py=1, Tp =1, Vo = 10, T =1,

and we examine the effects of varying the “leakage parameter” d and the form of
V1(2). We start with the simplest case in which V; is linear in ¢, say

Vi=1-—oaz,

where a € (0, 1); & = 0 implies a compression ratio of one, while as &« — 1 the
compression ratio goes to infinity. In figure 14 we plot the pressure in the chamber
and the reservoir versus time for the case « = 0.5, d = 1. We can see how Py
increases during each cycle and is reset each time a new cycle begins. In the
reservoir, P, varies only slightly during any cycle, and is incremented gradually
at each discharge. Closer examination reveals that, because of leakage between
the chamber and the reservoir, P, decreases when P, > P; and increases when
Py < Pi. For these parameter values, the system appears to settle down to a
periodic state after around 60 cycles, with the pressure in the reservoir enhanced
by a factor of just over 2.

In figure 15 we show the corresponding behaviour of the temperature for the same
parameter values. The behaviour is seen to be rather similar to that of the pressure.
Henceforth we do not bother to present the results for the temperature since it is
irrelevant to the total stored energy, which is proportional to P, V5.

In figure 16 we present the results for the pressure variations when & = 0.8, so
the compression ratio is five, compared with two in the previous calculations. As
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t

10 20 30 40 50 60

Figure 14: Pressures P; (in the compression chamber) and P; (in the pressurised reservoir)
versus time. The volumes are V; = 1 — 0.5 ¢, V, = 10 and the leakage parameter d = 1.

t

10 20 30 40 50 60

Figure 15: Temperatures T; (in the compression chamber) and 7, (in the pressurised
reservoir) versus time. The volumes are V; = 1 — 0.5 t, Vo = 10 and the leakage
parameter d = 1.
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Figure 16: Pressures P (in the compression chamber) and P, (in the pressurised reservoir)
versus time. The volumes are V; = 1 — 0.8 ¢, V, = 10 and the leakage parameter d = 1.

expected, the increased compression ratio leads to a somewhat higher final pres-
sure, although the system also takes somewhat longer to converge to its periodic
state.

In the light of figures 14 and 16 it is of interest to ask how the final pressure
achieved in the reservoir depends on the compression ratio, i.e. on «. As a mea-
sure of this we take the average of P; over the 100® cycle:

101
P(100) = f P, dt,
100

and plot the result versus « for various values of d in figure 17. Not surprisingly
the pressure achieved increases as « is increased and as d is decreased. However,
for sufficiently small d, decreasing d still further doesn’t appear to have much
effect; the graphs for d = 0.25 and d = 0.5 are virtually indistinguishable. This
is explained by examination of the transients, which makes it clear that for these
small values of d, P, has yet to equilibrate after 100 cycles.

So, we have shown the rather obvious results that the effectiveness of a com-

pressor can be enhanced by increasing the compression ratio and by minimising
the leakage, although these also make the convergence to maximum compression

slower. Next we would like to compare compressors with the same compression

ratio but different histories V(). Therefore we consider the family
Vi=1-pt+ (Vi+ B — )2

shown in figure 18, where Vy is the final volume (so the volume ratio is 1/ Ve)
and B changes the volume history for a fixed Vy; 8 = 1 — V; gives the linear
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P(100) d =0.5,025

15

d =0.75

12.5

10

d=1

Figure 17: Average reservoir pressure over the 100% cycle versus compression parameter
o. The volumes are V| = 1 —at, V; = 10 and the leakage parameter d = 0.25, 0.5, 0.75,
1. Notice that the curves for d = 0.25 and d = 0.5 are indistinguishable.

T decreasing 8

Figure 18: The family of curves V; = 1 — Bt + (Vs + B — 1)¢? for various values of 8
(here V¢ = 0.3). The value 8 = 1 — V gives a straight line joining V; = 1 att = 0 to
Vi = Vsatt = 1; B = 0 has zero gradient at t = 0; B =21 +\/V-f) is the value at
which V; first reaches zero for ¢ € (0, 1).
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!

//- increasing Vg
R—— ‘ // 8

-2t

Figure 19: Theoretically predicted leakage [ = fOI(Vl"'_1 — V7Y dt for the family of
volume histories depicted in figure 18; Vi =1 -8t +(Vy+ 8 — 1)z2 with Vy=0.1,0.2,
0.3,0.4,0.5.

V1(2), i.e. constant compression rate, considered previously. Broadly speaking, if
B is decreased the compression is slower initially and accelerates towards the end
of the cycle, and vice versa.

Firstly we check how our theoretical approximate leakage ! given in (71) varies
with 8. In figure 19 we plot [ versus B for different values of V. We observe that
the theoretical leakage for a given volume ratio is reduced if the compression is
slow at the beginning and faster at the end. This echoes the suggestion at the end
of section 6 that the volume should be reduced gradually at the start. There is a
surprise, however, in that [ can be negative if § is sufficiently large and negative.
This corresponds to large positive excursions in V; (see figure 18), as a result of
which the compressor acts like a bellows, sucking extra gas into the chamber.

This conclusion is backed up by figure 20 in which we plot P (100) from our sim-
ulation versus 8 for different values of V¢ (and with d = 1). Here the behaviour
in general is extremely interesting; depending on the volume ratio P may be an
increasing or decreasing function of 8, or may vary nonmonotonically. Howeyver,
for the large volume ratios which are likely to be of most practical interest, the op-
timal performance (i.e. largest possible value of P(100)) is obtained by making 8
as large and negative as possible.

8 Conclusions

We have used the natural equation of a curve to define the geometry of the scrolls,
and this allows us to obtain all the geometric properties of scroll compressor on
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Figure 20: Average reservoir pressure over the 100%™ cycle for d = 1 and the family of
volume histories depicted in figure 18; V) = 1— Bt 4+ (Vi + 8 — D)¢? with Vy=0.1,02,
0.3,0.4, 0.5.

symbolic form if we give the arc length as a polynomial in the tangent direction.
The formulas are especially simple if we restrict ourself to compressors with a
circular orbit.

We have characterized all compressors with a circular orbit and constant wall
thickness, and have argued that these compressors do not offer any advantages
over the standard circle involute compressor.

We have outlined a procedure which design a compressor given the natural equa-
tion of one of the sides, the radius of the circular motion, and the thickness of the
scroll wall at one place. That compressor has the property that the two scrolls are
the same just rotated 180° degrees relative to each other.

There is no guarantee that the scroll compressors constructed this way are physical
realizable, basicly the radius of the circular motion and the thickness of the walls
should be sufficiently small. It would be possible to give estimates on the bounds
for these two numbers, but this has not been investigated.

We have used compressible lubrication theory to obtain a theoretical prediction of
the leakage between adjoining chambers in a scroll compressor. One surprising -
outcome of the analysis is that the gas flowing through the narrow gap between
one chamber and the next is isothermal. In traditional inviscid gas dynamics one
would expect the temperature to decrease as the gas accelerates through the gap,
while classical lubrication theory would predict an increase in temperature due to
viscous dissipation. Remarkably these two effects appear to cancel each other out
exactly.
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Our result for inter-chamber leakage was then incorporated in a coupled model
for the pressure and temperature of the gas in each chamber. The model takes the
form of a dynamical system, whose general properties certainly warrant further
investigation. Our analysis was limited to examination of the case in which the
leakage is small. In this limit we obtained an approximate measure of the total
losses due to leakage, as a functional of the geometry of the compressor. This
could in future be included in a cost function for evaluating proposed new com-
pressor designs.

We performed some numerical simulations of a simple compressor with just one
chamber pumping gas into a sealed reservoir. From these we were able to test
the effects on compressor performance of varying the leakage rate, the volume
ratio and the volume history. The most intriguing possibility suggested by the
simulations is that of making the chamber volume increase initially, before a rapid
compression just prior to discharge. This allows the compressor to use the leakage
in its favour by sucking more gas in from the atmosphere.

Many potentially important physical effects have been neglected in this study, and
might be considered in the future to refine the model further. These include ther-
mal losses through the compressor walls, and the “squeeze film” and “Couette”
effects in the lubrication analysis (i.e. the terms multiplied by € in (56, 57)).
Perhaps most importantly, we have restricted our analysis to a two-dimensional
configuration, and thus have not considered leakage through the sides of the cham-
bers. The results of section 4 should be applicable to these regions also.

Finally we have demonstrated how to combine the geometry and the leakage anal-
ysis to estimate the leakage of a compressor with a given geometry.
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