
Strategic bidding in a primary reserve auction

Denes Palvolgyi∗ Gergely Csapo∗ Meike Wortel†

Thijs Ruijgrok‡ Wander Wadman,§ Zsombor Meder∗

1 Introduction
Electricity grids are subject to a constant change of demand. If a power line is over-
loaded, the demand is rerouted to another line, which is then also likely to overload
due to the sudden spike in voltage. Due to this cascading effect a grid-wide blackout
is not at all improbable; one occurred in Italy in 2003. The costs of such a blackout
are immense in today’s modern society. Transport and telecommunication systems
have such a high power demand that a backup power generator system would come
at a very high cost. To solve this, Germany requires the electricity grid operators to
have Primary Reserve Capacity on standby. Primary Reserve Capacity is provided
by power plants that are able to go online and start generating power at 10 seconds
notice. Such a feat is technically complicated, and providing plants require govern-
ment certification. In Germany the PRC is obtained at a monthly auction: the bidders
submit pairs of quantity and price/unit ratios: they are willing to provide a capacity
of x Megawatts at a price of y euros/Megawatt. A supplier may divide his capacity
and submit multiple bids, but he has to be able to provide the summed capacity of his
accepted bids. The demand of the grid operators is predetermined by past statistics,
and the demand is perfectly inelastic due to legal reasons. The auction mechanism
is such that capacities with the lowest price/unit ratios are bought until the demand
is fulfilled. If the quantity of the last bundle bought exceeds the remaining demand,
only the necessary part of the quantity is bought. The auction results are made pub-
licly available, but only the accepted offers. Therefore bidders cannot easily estimate
the strategies of the other bidders. However PRC-capable power plants are expen-
sive. The players in the market have good estimates of each others’ capacities. Such
a market - known demand, few suppliers with approximately known capacities and
algorithmic market mechanism - seems ideal for economic analysis. However, it is
unclear whether the human decision makers involved introduce too much chaos into
this system. In section 2 we present the game theoretical model that has been solved
by Kreps and Scheinkman [2]. In section 3 we give up the assumption of rationality
and examine models of bounded rationality. In section 4 we discuss the results of
econometric models run on time series.
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2 Game theoretical model
The Nash-equilibrium solution of a more complicated case is already provided in
Kreps and Scheinkman [2]. They discuss the problem of a Bertrand duopoly1. with
capacity constraints and zero production costs, but their findings are easy to extend.
Let us assume that there are n players and the capacity of player i is xi > 0. First let
us assume that the ’production’ or activating capacity is 0. Let D denote the demand.
If there is no j such that

n∑
i=1

xi < D + xj ,

then the competitive equilibrium of this game is that all firms offer their capacities at
0 price. In a situation when firm were offering their capacities at a positive price there
is unavoidably someone who cannot sell his complete capacity. This firm can gain by
selling his leftover capacity at half the price, so there is no other equilibrium.

Assume that the activation of capacities is costly, or there is an alternate market
for the leftover capacities (which is true in our case: PRC plants can also produce
energy at constant rate for long durations) and the per unit costs of the firms are such
that c1 ≤ c2 ≤ ... ≤ cn. Let j be the smallest number with

j∑
i=1

xi > D.

Then the equilibrium price is cj+1. In situation with price p > cj+1 there would again
be a firm with unsold capacity and he could gain by selling it for p+cj+1

2 .
If there is a firm j such that

n∑
i=1

xi < D + xj ,

then we run into technical difficulties. Without the capacities of firm j, the demand
cannot be satisfied, and demand is inelastic. So firm j can theoretically ask for any
price, so there is no optimum price and hence no equilibrium. Obviously this is not
the case in the real world. Such behaviour would attract investigations by the author-
ities for abusing market power. Assuming there is a highest price which is not yet
suspicious, the firm j has to assess whether it is best to sell his partial capacity at the
maximum price or his full capacity at competitive price. If he benefits more by selling
his partial capacity at maximum price then there is no pure equilibrium as the other
firms have no incentive to sell at a much lower price, and a price war of infinitesi-
mal undercutting would ensue. For the mixed equilibrium see Kreps and Scheinkman
(1983).

It is worth noting that firms also covertly or tacitly cooperate. Assume there are
just two firms, with x1, x2 > D and c1 = c2 = 0. Let the maximum price be
normalized to 1. We assume that if the firms bid at the same price the demand is
distributed among them equally. As we stated before the Nash-equilibrium would be

1A Bertrand duopoly is a market with two suppliers where buyers buy from the supplier with the lowest
price until his supply is used up or the demand is fulfilled.
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to sell at 0 price. If both firms were to sell at the price of 1 they would both benefit.
But this cooperation is not an equilibrium in the one-shot game as a firm can gain by
selling at 1− ε if ε is a small enough positive number. But if the game is repeated over
infinite time periods and future money is discounted at a rate of 1

1+r then there may be
infinitely many equilibria. A simple one is constructed using the following strategy:
I will price at 1 until the other firm does so as well. If he undercuts me I will start
pricing at 0 and will do that forever. This strategy is an equilibrium if undercutting the
other is not beneficial, that is there is no ε > 0 such that

D(1− ε) > D

2

( ∞∑
i=0

1

(1 + r)i

)
.

This is true if
r ≤ 1

which is a reasonable assumption for the interest rate. If there are n firms, the equation
changes to

D(1− ε) > D

n

( ∞∑
i=0

1

(1 + r)i

)
and

r ≤ 1

n− 1

so cooperation in equilibrium is less likely. The actual data supports this theoretical
prediction when the bi-annual auction got replaced by a monthly auction. The ef-
fective interest rate dropped, and prices raised by close to 50%. While this can be
interpreted as a sign of tacit collusion, it can also mean that the firms had less to
lose so they were willing to risk higher bids, and this started an upward trend which
encouraged further increasing bid prices.

There were regular price fluctuations on the market, which does not happen in our
theoretical model, not even if we consider mixed equilibria. Therefore we decided to
give up the assumption of profit maximizing behavior. These models are presented in
the next section.

3 Models of bounded rationality
In this section we assume that the firms make decisions based on some simple but
non-optimal rule. Of course it is impossible to guess what specific rules firms are
using, so we decided to invent a few sensible ones and run numerical simulations to
see what kind of dynamics evolve.

The model simulates the primary reserves market and uses the same rules for the
acceptance of the bids. We simulate some players that have a certain capacity and
follow certain strategies for their bids (Table 1). For the strategies the players can
use the information of the accepted bids from the previous auctions and their own
previous bids. We want to simulate the fact that human players have a random factor
to their bidding. Hence, we are interested in the influence of small deviations from
the strategies. Therefore we add a factor (R) multiplied with a random real number
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Ave Bids the average of accepted bids of the last auction for
its total capacity.

Max Bids the highest of the accepted bids of the last auction
for its total capacity.

Avemax Bids the average of the maximum and the average of the
accepted bids of the last auction for its total capacity.

Updown Always bids total capacity; If the last bid was completely
accepted, bids last bid + 5, else bids the lowest bid of the
last auction.

Sacupdown Always bids total capacity; If (part of) the last bid was
accepted, bids last bid, else bids the lowest bid of the last
auction.

Expol Extrapolates the highest accepted bid from the last 2 auc-
tions and bids its total capacity on the highest expected
accepted bid.

Spread Splits its capacity in 5 equal parts and bids them with a
difference of 10 between the bids; If all the bids are ac-
cepted, it replaces the lowest bid with a bid 10 higher than
the highest bid last time; It at least 3 bids are declined, it
replaces the highest bid with a bid 10 lower than the low-
est bid it bid last time; otherwise it will bid the same.

Table 1: Strategies

ε ∈ [−1, 1] to the bids. We simulated 2000 rounds of bidding for a total demand of 80
with 7 players specified in Table 2. We added a random value between -1 and 1 to all
bids (R = 1).

The maximum accepted bid shows a slow decline (Fig. 1). If we do the simulations
without adding a random factor the bidding will converge (results not shown).

If we look at the relative payoffs of the different strategies (the money they made
divided by their capacity) we see that Ave and Avemax are doing best (Fig. 2). Sacup-
down and Updown are doing almost as well, there is only a difference in payoffs in the
beginning (influenced by their initial bid). These are the strategies that do not aim to
bet the maximum and always get accepted. Player 6 playing Max had a high capacity
and suffered from only getting accepted partially.

Player nr Capacity Strategy First bid (Price, Capacity)
1 15 Sacupdown (710, 15)
2 5 Ave (690, 5)
3 15 Avemax (700, 15)
4 5 Expol (700, 5)
5 10 Spread (680, 2) (690, 2) (700, 2) (710, 2) (720, 2)
6 40 Max (700, 40)
7 30 Updown (610, 30)

Table 2: Capacity and strategy of the players
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Figure 1: Maximum accepted bid over time

Including some random factor in the bidding will decrease the accepted bids in the
auction over time. This is because random lower bids are always seen by the other
firms, while random higher bids are sometimes not accepted and therefore not seen by
the other firms. Since firms base their strategies on the bids of the last auction they
will have a more negative view of the auction if there is a bigger random factor. If all
firms follow the Avemax strategy and their is no random factor the market price will
stabilize. However, with a random factor the price will decrease (Fig. 3).

We show that the fact that there is some random spread in the bidding will lower
the bids in the auction if the firms use a strategy based on the accepted bids of the last
auction. In our simulation the strategies that were not too optimistic are doing best.
However, all the strategies here are fairly optimistic, if we add strategies that aim
for just being accepted (for example bid the minimum bid of the last time), the price
would drop very fast. For example, if the sixth firm, playing Max, decided to play Min
instead, the price would drop to close to zero within 85 rounds of bidding. Therefore,
even though Max was not doing too well, it is doing better than a strategy Min would
do in its place. Since firms are looking to maximize their profit they are interested
in their payoff and not their relative payoff compared to other firms. So overbidding
or withholding capacity might be a good long term strategy. If the capacity is a lot
higher, the price will drop fast and if the demand is close to the total capacity the
price might even increase. This could justify holding back some capacity because
the demand will then be close to the total capacity (or offer at a high price, which is
effectively the same, because the other firms won’t see the bid). Past data from the
German PRC auctions confirms this, see the the huge price increases in November
2008 and April 2011. We don’t take the value of the unused capacity into account
here. That would also imply a minimum bid by all firms and it could be interesting to
include, especially if this value is not the same for all firms. It might also be interesting
to include strategies that use their capacity relative to the total demand into account.

We have shown a specific example of a few strategies. However, this shows some
general trends such as: the decline caused by random fluctuations, the importance of
the total capacity relative to the demand and the effect of a optimistic or pessimistic
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Figure 2: Payoffs of different strategies

Figure 3: Effect of random changes in the bid if all firms play Avemax.

strategy on the general trend of the auction. To generalize these results or use them
for a specific case the strategies have to be expanded or calibrated.

4 Time series analysis
A natural question was whether time series analysis could yield any promising strat-
egy. Adopting the general attitude of econometric modeling, we assumed that noth-
ing fundamental is known about the data-generating process, therefore our available
dataset comprised just the set of accepted bids – pairs of quantities and prices – from
December 2007 to January 2011. The question was whether using this data we could
find any algorithm that could generate either expectations for the next months, or even
a specific bidding strategy that would outperform experts.

First, it was necessary to trim the dataset. Since there was evidence that the data
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for the first thirteen months was unreliable for prediction purposes, market conditions
having changed vastly within this period – e.g. there were a different number of
companies involved, consequently, a smaller overall supply for the primary reserves
– we built models using only data starting with January 2009. Notwithstanding our
reservations about the length of the resulting time series (just 25 time periods), we
attempted to uncover the autoregressive moving average (ARMA) structure of the
process, checking whether it could be used for prediction purposes. The ARMA model
is a statistical tool that helps to understand the development of a process in time. The
model tries to approximate the next point of the time series by taking into account
the previous observations and the error terms. For further explanation consult to [1,
pp. 43-72]. The advantage of autoregressive models is precisely that they require no
theoretical assumptions about the causal background of the time series in question,
and we thought that this was fitting to our purposes.

The problem of condensing the dataset of observation pairs into a more manage-
able time series also arose. Consequently, we decided to concentrate on prices, and
only take quantities into account as weights for the average price, the latter having
obvious implications for bidding policy. For the average only actually accepted quan-
tities were included.

Autoregressive analysis first required us to check whether the series contains unit
roots, and to how many levels. For the most common significance level of 5%, the
examined process was integrated once. Therefore, the ARMA model was written for
the (once) differentiated variable. We have checked for autoregressive and moving
average components of a maximum length of 3, giving a total of 16 possible models.
The model selection criteria employed was the Schwarz criterion, which penalizes
more for model complexity than the Akaike criterion. With this method, we have
found that the most fitting model had an MA(3) structure, providing a promising R-
squared of 35%, which was relatively robust for changing sample size, popping out as
the best model in over half of the cases, including the full sample.

However, despite its relative advantage over alternative ARMA models, the fore-
casts of an MA(3) regression based on the difference of average price cannot be di-
rectly adapted as a bidding strategy. First of all the number of observations is obvi-
ously too small, so there is likely an overfitting on data. Moreover, this model cannot
be easily interpreted economically: the terms of the equation have both negative and
positive signs, and the estimated impact increases with the length of lag, which is
counterintuitive. Even if we avoid a specific interpretation, forecasting out-of-data
with this model sometimes suggests an average price too close to the actual maxi-
mum, which would imply that at least a part of the bid for the primary reserve would
not be accepted, potentially leading to great financial losses. Finally, the generated
confidence intervals are sometimes wider than the actual spread of prices, indicating
that this approach is indeed unreliable.

Although other approaches were tried (including but not limited to changing the
model selection criterion, generating different percentiles for the price from the orig-
inal data and trying to forecast the maximum or the minimum price) econometric
analysis could provide no more than ad hoc solutions for the specific dataset. These
are consequently unusable for out-of-data forecasting. The lack of economic insight
even for the best models signaled the theoretical and practical weakness of the method.
This suggests that even the most successful model would have been outperformed by
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actual expert decisions.

5 Conclusion
Our models could explain some phenomena in the PRC auction: the price increase
when the time period changed from bi-annual to monthly is due to decreased risk.
Occasional price spikes can be explained by the overbidding of a firm with signifi-
cant market share. While it loses money in the short run, the slowly vanishing price
increase might compensate him in the long run. However qualitative explanations of
these dynamics do not enable us to give an accurate prediction of tomorrow’s prices.
Since a few firms have significant market share their bids have a big effect on the
price. From data mining we determined that some of the decision makers at these
firms use ad-hoc rules when they make their bids, hence foreseeing the equilibrium
price perfectly would fall more in the realm of psychology. We advise the bidders to
stick close to the minimum price of the previous month. This strategy would have
resulted in acceptance of the bid in every month, and it does not give a much lower
revenue than a frequently but not always accepted maximum bid would. Prices will
fall in the long run, and the cost of keeping them up by withdrawn capacities is too
high.
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