
Testing and finding the generating functions g
of an option pricing mechanism through market data

We study dynamic pricing mechanisms of financial derivatives. A typical model of such pricing
mechanism is the so-called g --expectation defined by solutions of a backward stochastic differential
equation with g as its generating function. Black-Scholes pricing model is a special linear case of
this pricing mechanism. We are mainly concerned with two types of pricing mechanisms in an option
market: the market pricing mechanism through which the market prices of options are produced, and
the ask-bid pricing mechanism operated through the system of market makers. The later one is a
typical nonlinear pricing mechanism. Data of prices produced by these two pricing mechanisms are
usually quoted in an option market.

We introduce a criteria, i.e., the domination condition (AS) in (4.1) to test if a dynamic pricing
mechanism under investigation is a g-pricing mechanism. This domination condition was statisti-
cally tested using CME data documents. The result of test is significantly positive. We also provide
some useful characterizations of a pricing mechanism by its generating function.

Dr. Faith Choy, on behalf of her team Reuters Hong Kong (Steven Cheung Deborah Au) proposed
the following very interesting and important problem in option pricing: the well-known Black-Scholes
formulae to price European options which was originated from the seminal papers of Black and Scholes
(1973) and Merton (1973) with focuses on the following practically assumptions:

1. Create risk-free portfolios through dynamic hedging

so that the portfolios earn risk-free interest rate;

2. Ensure an absence of arbitrage environment (Efficient markets);

5. Assume that stock returns follow a lognormal distribution.

They have proposed An alternative to Black-Scholes: pricing options with artificial intelligence and
asked the following question: How to improve the non-linear transfer function g(.) so that it can be
effectively used to price options at low computation complexity? The study group has discussed this
problem (Faith Choy, Benny Hon, Daniel Ho, Johnathan Wylie, Gerard Tronel, Shige Peng).

As it happen, our research group of Shandong University, collaborated with other research groups
in mathematical finance, such as Ecole Poly technique de Paris, Universite de Rennes 1, ETH, Zurich,
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have struggled, for a quite longtime, a similar problem of finding the generating function 9 of a pricing
mechanism of financial derivatives, including European call and put options, American options, Asian
options, and some other exotic options.

The history of mathematical finance can be traced from Louis Bachelier's 1900 Thesis on option
pricing. The theoretical and practical breakthrough of option pricing was Black-Scholes formula. But
till then, the central problem of mathematical finance is still and, maybe always, the pricing mechanism
of traders, market makers, small and large investors, and of a market.

We are agree with Reuters' opinion: in some sense a pricing mechanism of an financial institution
is a blackbox. Its input is a derivative product and its output is the price of this, or the prices--since
a market maker has the privilege to offer two prices: the ask price and the bid price. It is this dynamic
blackbox of derivative pricing mechanism with, usually a huge quantity of input-output data that attract
us to find if there is a generating function hidden behind us.

quantitatively describe the pricing mechanism of a market of derivatives is a very interesting problem.
A model of dynamic pricing mechanism of derivatives is formulated (see (Al)-(A4) in the next section)
to characterize this pricing behavior.

We are mainly concerned with two types of pricing mechanisms in an option market: the market
pricing mechanism which outputs the trading prices of options and the bid-ask pricing mechanism op-
erated according the system of market makers. We stress here that, in our point of view, the ask prices
and the bid prices quoted in a market are determined by a single pricing mechanism. The difference of a
ask price and the corresponding bid price, called bid-ask spread, reflects the nonlinearity of this mecha-
nism. The data of prices of above mentioned two pricing systems is usually systematically quoted in the
internet thus the models under our investigation can be statistically tested. We hope that our modelling
can also be applied to describe the pricing mechanism of some other financial institutions.

The well-known Black-Scholes formula is a typical model of dynamic pricing mechanism of deriva-
tives. It is a linear pricing mechanism. In fact, the prices produced by this mechanism is solved by a
linear Backward Stochastic Differential Equation (BSDE). This means that the corresponding generating
function 9 of the BSDE is a linear function. A nonlinear pricing mechanism by BSDE was originally
proposed in [9]. In this report we show that each well-defined BSDE with a fixed generating function 9
forms a dynamic pricing mechanism, called g-expectation and that the behaviors of this mechanism are
perfectly characterized by the behaviors of g. Several conditions of equivalence provided in this report
will be very helpful to characterize and to find the generating function, or in some other circumstances,
to regulate or to design a pricing mechanism.

A very interesting problem is how to design a test procedure to verify whether an existing pricing
mechanism of derivatives is a g-expectation. We will present the following result: if a dynamic pricing
mechanism is uniformly dominated by a gj1-expectation with a sufficiently large number J-L for the func-
tion gj1 = J-L(lyl + Izl), then it is a g-expectation. This domination inequality (4.1) has been applied as a
testing criteria in our data analysis. The results strongly support that both the market pricing mechanism
and the bid-ask pricing mechanism under our investigation can be modelled as g-expectations, and that
the bid-ask prices are then produced by this single mechanism.

In this report we present the notion of g-pricing mechanism and show that, for each well-defined
function 9 it satisfies the basic conditions (A I)-(A4) of a dynamic pricing mechanism of derivatives. We
then show that, a dynamic pricing mechanism dominated by a gj1-expectation, i.e., (4.1) is satisfied, is a
g-expectation. In Section 3, we will present some equivalent conditions to show that the behaviors of a
g-expectation are perfectly reflected by its generating function g. We also provide some examples and
explain how to statistically find the function 9 by testing the input-output data of prices.

We apply the crucial domination inequality (4.1) to test the market pricing mechanisms and the



bid-ask pricing mechanisms of S&P500 index future options and S&P500 index options, using data of
parameter files provided by CME and CBOE. The result supports that they are g-expectations.

The main references of this report are [25] and [28].

Let us consider an d-stock market with price S (t) = (Sl (t), ... , Sd (t)). A derivative X underlying on
the stock S with maturity T is a contract of which the value X is determined by the prices of S before
T. A typical example is an European call option X = max{O, Sl(T) - k) where the strike price k is
fixed. In this case X depends only on S at the time T. An Asian option X = ~J~Sl(t)dt depends on
the whole prices of Sl before T. The central problem how, at a time t < T, an financial institute make
a price of a derivative X with maturity T?

A method quite different from the Black-Scholes's one is to formulate a pricing mechanism as an
input-output box. This input-output system is significantly different from a traditional dynamic system
e.g. a control system or a regulator in the sense that the input data, the option contract will be realized at
its maturity time T whereas the output of this mechanism is the price of this option at the present time
t < T. This means that the input data is realized after the output price. If we denote XT to be the option
contract whose data will be realized at the time T, the output of this pricing mechanism is the price of X T

at time t, denoted by ((J)t,T[XT]. However we make a basic and reasonable assumption that the input XT
depends on the prices of the underlying stocks (Ss)s5:.T, before the maturity T, and the output ((J)t,T[XT]
depends only on (Ss)s5:.t.

Our main assumption on this dynamic blackbox {((J)t.T[XT]}t5:.T is as follows: for each s :::;t :::;T <
00, derivative contracts X, X depending on the price of S before t, the price of ((J)t,T[X] (respectively
the price of ((J)s,T[Xj) depends on the price of S before t (respectively, before s) and we have

(AI) ((J)t,T[X] ;:::((J)t,T[X], if X ;:::X;

Remark 2.1. (A J) and (A2) are economically obvious conditions for a rational derivative pricing mech-
anism. Condition (A3) means that, at the time s, the value ((J)f.T[X] depends on the price of S before t,
thus ((J)f T[X] can be regarded as a derivative contract with maturity t. The price of this derivative at s
is ~,t[<Of,T[X]]. This price must be the same as ((J)~.T[X],

Remark 2.2. The meaning of condition (A4) is that, since at time t, the agent knows already the value
of fA which either 1 or O. When fA is 1, then lAX = X thus the price ((J)f T[lAX] must be the same as
((J)f.T[X], otherwise lAX = 0, so it worthies ((J)f.T[lAX] = ((J)f.T[O]= ° = lA((J)f,T[X],



Let us consider a market of financial derivatives in which the price (S(t))t>o of the underlying assets
is driven by a d-dimensional Brownian motion (Bdt:~o. We assume that the past information :r"t of
the price S before t depends on the values of B before t. A derivative X with maturity T is an FT-
measurable and random value called maturity value. X is considered as an input. The output is the price
yt of X at the time t < T of a given pricing mechanism.

Here we make a basic technique requirement that each process TIt is Fradapted, namely, the value of
TIt depends on the values of the Brownian motion B before t. Our BSDE pricing mechanism is to solve
yt by the following backward stochastic differential equation (BSDE):

yt = X + iT g(s, Ys, Zs)ds - iT ZsdBs.

Here (Y, Z) a pair of the Ft-adapted processes to be solved, 9 is a given function

We call 9 the generating function of the BSDE. It satisfies the following basic assumptions for each Vy,
fj E Rand z, z E Rd,

{
(a)

(b)
g(·,O.O) == 0,
ge, y, 0) == 0, Vy E R.

Obviously (b) implies (a). This BSDE (3.1) was introduced by Bismut [1] for the case where 9 is a linear
function of (y, z). [17, Pardoux-Peng, 1990] obtained the following basic result: for each X E L2(FT),
there exists a unique square-integrable adapted solution (Y. Z) of the BSDE (3.1). The following notion
of g-expectations was introduced by [20, Peng 1997a] and [21, Peng 1997].

Definition 3.1. Wedenote by «J)¥.T[X]:= yt:

((J)¥,T[·])O:s;t:S;T<oois called g-pricing mechanism.

As an example of BSDE pricing mechanism, we consider the following Black-Scholes pricing mech-
anism:

Example 3.2. (Black-Scholes is a g-pricing mechanism) Consider a financial market consisting of
2 underlying assets: one bond and one stock. We denote by SoU) the price of the bond and by S(t)
the price of the stock at time t. We assume that SoU) satisfies an ordinary differential equation:
dSo(t) = TtSo(t)dt. and S(t) is the solution of the following stochastic differential equation (SDE)
with I-dimensional Brownian motion B (i.e., d = 1) as driven noise:

Here Tt is the interest rate, bt the rate of the expected return and (Jt the volatility of the stock at the time
t. Tt, bt, (Jt and (J-l are assumed to be Ft-measurable and uniformly bounded. Black and Scholes have
solved the problem of the market pricing mechanism of an European call option Xcall = max{O. ST - k}
and put option Xcall = max{O, k - Sr}, where J,; is the strike price, under the assumption that T, band (J



are constant. Their main idea can be easily adapted to our slightly more general situationfor a derivative
X E L2(FT) with maturity T. Consider an investor with the following investment portfolio at a time
t:S T: he has no(t) bonds and n(t) stock, i.e., he invests no(t)So(t) in bond and 1r(t) = n(t)S(t) in the
stock. We define by Yi: the investor's wealth invested in the market at time t:

dYi: = [rtYi:+ (bt - rt)1r(t)]dt + rJt1rtdBt·

We denote g(t, y. z) := -rtY - (bt - rt)rJ;l z. Then, by denoting Zt = rJt1r(t), the above equation is

We observe that the above function 9 satisfies (3.2). Itfollowsfrom the existence and uniqueness theorem
of BSDE that for each derivative X E L2 (FT), there exists a unique adapted solution (Y, Z) with the
terminal condition YT = X. This result of existence and uniqueness is economically meaningful: in
order to replicate the derivative X at the maturity T, the investor needs and only needs to invest the
Yi: at the present time t and then, during the time interval 8 E [t, T], to perform the portfolio strategy
1r(8) = rJ,;l Zs. Furthermore, by Comparison Theorem of BSDE, if he wants to replicate a derivative
X with the same maturity T which is bigger than X (i.e., X ;:: X and P(X ;:: X) > 0) then he must
invest more than Yi: at the time t. This means there this no arbitrage opportunity. In this situation
Yi: = OJf T[X] is called the Black-Scholes price, and (OJf T['])O<t<T<oois called the corresponding
Black-Scholes pricing mechanism. We observe that the ge~erating junction 9 satisfies (a) of condition
(3.3).

Example 3.3. Xcall = max{O, ST - K}, Xput = max{O, K - ST}

OJf,T[XcaU]= StN(d1) - K exp (-r(T - t)) N(d2)

OJf.T[Xput] = K exp( -r(T)N( -d2) - SoN( -dd

d
1

= In(So/ K) + (r + rJ2/2)(T - t) .
rJJT - t

d2 = In(So/ K) + (r - rJ2/2)(T - t) = d
1

_ rJVT _ t
rJJT - t

1 JX 7]2N(x) = ~ exp( -- )d7]
v21r -00 2

Example 3.4. The following problem was considered in [5] and [9]: the investor is allowed to borrow
money at time t at an interest rate Rt > rt. The amount borrowed at time t is equal to (Yi: - 1r(t)) -. In
this case the wealth process Y still satisfies BSDE:

-dYi: = g(t. Yt, Z,.)dt - ZtdWt.

with g(t, y, z) := -rtY - (bt - rdrJ;l z + (Rt - rt)(Y - rJ;l z)-. This derives a g-pricing mechanism
with a sub-additive generating function g.

Similar equations appear in continuous trading with short sales constraints with different risk pre-
mium for long and short positions (cf. [15], [11] and [9]). In this case g(t, Y, z) := -rtY - (bt -
rr)rJt1z + ktz-. We observe that in each of the above three examples, 9 is sub-additive in (y, z).



As the method of binormal tree in the option pricing model, our main idea of the calculation of BSDE is to
replace the above Brownian motion B by a random walk. We refer to [29] for the details of our numerical
approach. We make a standard time-partition of the interval [0,1]: 0 = to < t1 < ... < tn = 1,
8 := tj - tj-1 = ~' for 1 ::; j ::; n. Consider {(cmh::;m::;n}, a Benoulli sequence, with co = 0, which
are i.i.d. random variable satisfying

_{+1, p=0.5
Cm - -1, P = 0.5 .

Now we define the scaled random walk {Bn}, by setting Bo = 0,

[t/o]

B~ = V5 L Cm, 0::; t ::;T.
m=O

and denote Bj = B~, i.e., Bj = yI8 ~::n=1 Cm' And we define the discrete filtration Fj := o-{Cm; 0 ::;
m ::; j} = o-{ B~; 0 ::; t ::; tj}, for 1 ::; j ::; n.

Then on the small interval [tj, tj+1], the equation

can be approximated by the discrete equation

yj = yj+1 + f(tj, yj, zj)8 - zjV5(Bj+1 - Bj). (3.7)

If f(t, y, z) satisfies the Lipschitz condition with constant k, for 8 < 11k, there exists a unique couple
(yj, zj) satisfying equation (3.7). In fact with Bj+1 - Bj = Cj+1, and E[cj+lIFj] 0, we get
immediately

zj = I/£E[yj+1cj+1IFj].
2v8

Then taking conditional expectation on (3.7), it follows

yj = E[yj+1IFj] + f(tj, yj, zj)8.

Consider the mapping 8(y) = y - fUj, y, zj)o, from the Lipschitz property of f, we obtain

(8(y) - 8(y'), y - y') 2: (1 - 8k) Iy - y'I2 > 0,

which implies that the mapping 8(y) is a monotonic mapping. So there exists a unique value y S.t.
8(y) = E[yj+1IFj] holds, i.e. yj = 8-1(E[yj+1IFj])·

Remark 3.5. The existence of the solution of discrete BSDE only depends on the Lipschitz condition of
f on y. In fact, iff does not depend y, we can easily get 8-1(y) = y + f(tj, zj)8.

Remark 3.6. In general, iff nonlinearly depends on y, then 8-1 can not be solved explicitly, so some-
times we use CffJ, Z'j), where

yj = E[yj+1IFj] + fUj, E[yj+1IFj]· zj)8. (3.10)

-n 1 [n 1m]Zj = 2y18E Yj+1Cj+l orj ,

to approximate the solution for of8(y) = E[Yj+lIFj]. And (3.10) is called the explicit scheme for
BSDE, while (3.9) is called the implicit scheme for BSDE.



The following result, obtained in [25]-Theorem 3.4, explains why this g--expectation is a good candidate
to model a dynamic pricing mechanism of derivatives:

Proposition 4.1. Let the generating function 9 satisfies (3.2) and (3.3)-(a). Then the above defined g-
expectation 09[.] is a dynamic pricing mechanism of derivatives, i.e., it satisfies, for each t ::; T < 00,

- 2X, X E L (FT),
(Ai) Of T[X] 2: Of T[X], a.s., if X 2: X;
(A2) ~ T[X] = X';

(A3) Oft [Of,T [X]] = ~,T[X]; for s ::; t;
(A4) 1AO¥T[X] = O¥T[lAX], VA EFt,
where fA i~ the indicator function of A, i.e., fA(w) equals to 1, when wE A and 0 otherwise.

Remark 4.2. (A 1) and (A2) are economically obvious conditions for a pricing mechanism. Condition
(A3) means that, at the time s, the random value O¥.T[X] can be regarded as a maturity value with
maturity t. The price of this derivative at s is O~,t[Of,;[X]]. It must be the same as the price O~,T[X] of
X ats.

Remark 4.3. The meaning of condition (A4) is that, since at time t, the agent knows the value of whether
fA is 1 or O. When fA is 1, then the price O¥,T[lAX] of lAX must be the same as O¥.T[X], otherwise
lAX = 0, so it worthies O.

From the above results we see that 09 is a good candidate to be a dynamic pricing mechanism. The
following result provides a criteria to test if a dynamic pricing mechanism is a g--expectation. The proof
can be found in [27].

Definition 4.4. A system of mappings (Ot,T['])O:'S:t:'S:T<oo

is called a dynamic pricing mechanism of derivatives if it satisfies (A1)-(A4) (with 0[·] in the place of
09 [.]).

Theorem 4.5. Let ([J)t.T[·]O<t<T<oobe an dynamic pricing mechanism. If there exists a sufficiently large
constant J.L > 0, such that the following domination criteria is satisfied
(AS):

- 9 -
Ot.T[X] - Ot.T[X] ::; 0t.T[X - X].

091' is a g-expectation with the generating function gJ.Ldefined by

Then there exists a unique generating function g(w, t, y, z) satisfying (3.2) and (3.3)-(a) such that, for
each t ::;T andfor each derivative X E L2(FT), we have

Remark 4.6. This theorem also implies that, for a generating function 9 satisfying (3.2) and (3.3)-( a),
the corresponding g-expectation 09 is also dominated by ([J)91', i.e., (A5) is satisfied. This can be also
directly proved by using the comparison theorem of BSDE.



Remark 4.7. It turns out that the domination condition (4.1) becomes a crucial criteria to test whether
a dynamic pricing mechanism of derivatives is a g-expectation. Weprovide a test in Appendix 4.2 to use
market data to check the inequality (4.1).

Remark 4.8. This deep result has non-trivially generalized the main result of [4J, theoretically and
practically, where a special case 9 = g( t, z) with g( s, 0) == 0 is considered. The g-expectation originally
introduced in [21J corresponds such situation of "zero interest rate". (cf [25J).

With Chen L. and Sun P. of our research group, we proceed a data test for the criteria (A5), i.e., the
domination inequality (4.1), to check if a specific pricing mechanism is a g-expectation, or g-pricing
mechanism 09.

We have firstly tested the CME (Chicago Mercantile Exchange)'s market pricing mechanism of
derivatives by taking the daily closing prices of options with S&P500 index futures as the underlying as-
set. The data is obtained from parameter files published from CME's fpt-webset, named cmeMMDDs.par
(MM for month, DD for day) of call and put prices, from 05 January 2000 to November 2003, of totally
960 trading days. The corresponding S&P500 future's prices is obtained from the parameter files of
SPAN (Standard Portfolio Analysis of Risk) system downloaded from CME's ftp site.

We denote by X~ = (8T - ki)+ (resp. Y,j, = (8T - ki)-), the market maturity value of the call
(resp. put) option with maturity T and strike price ki. The corresponding values of the short positions
are - X~ and - Y,j,. We denote the market price of the corresponding prices of options at time t < T by
O~T[X}], O~}[YT], OrT[-X}] and 07,T[-Y,j,] respectively. The inequalities we need to put to the test
are, according to (4.1), in the following different combinations, with different (t. T) and different strike
prices

!
Call-Call:
Put-Put:
Call-Put:
Put-Call:

{

Call-ShortCall:
Put-ShortPut:
Call-ShortPut:

OrT[X}] - O~T[X~] :S Of:r[X~ - X~]
0Z,T[YT] - OZ,T[-Yf] :S 0f:r[Y,j, - Yf]

OrT[X~] - 0rT[Yf] :S 0f:r[X} - Yf]
0rT[YT] - O~T[X?] :S Of~T[YT- X~]

O~T[X~] - O~T[-X~] :S ([J)f:r[X~+ X~]
0rT[YT] - 0rT[-Yf] :S 0f:r[YT + Yf]
O~T[X~] - O;T[-Yf] :S 0fr[X} + Yf], . .

In the above inequalities the data of the left hand sides is the market prices of options taken from
CME parameter files. In our testing the transaction cost is neglected, i.e., we assume that O~T[-X] =
-O~T[X], The right hand sides is the corresponding values of gj.L-expectations. We fix f.L = 25 uni-
formly for all tested inequalities. We have calculated all these values on the right hand side by using
standard binomial tree algorithm of BSDE. Here an improved version of the algorithms of BSDE pro-
posed Peng and Xu [2005] has been applied to solve the following I-dimensional BSDE:

Yt = X + iT f.L(IYsl + Izsl)ds - iT zsdBs

'th d'f'" t t . I I ' - Xi xj vi vj Xi vj vi xj Xi + xj vi + vjWI I leren ermllla va ues YT - T - T' IT - IT' T - IT' IT - T' T T' IT IT'
X~ + Yf, respectively. The closing prices of S&P500 futures options of 69 trading days from year 2000
to 2003 have been put in the test. With the above mentioned combinations, we have tested a total number



of 6,200,828 inequalities of (5.l) and (5.2). This means that our BSDE (5.3) have been calculated
6,200,828 times. A very positive result was obtained: among the totally 6,200,828 tested inequalities,
only 17 are against the criteria (5.1). Among those 12 cases of violations,S are singular situation since
they themselves all violate Axiomatic monotonicity condition (AI). 5 cases are all from the same file
cme0701 s.par, 2003, Put-Put. They are all the following singular cases:

O~T[(ST - ki)-] > O~}[(ST - kj)-], for ki > kj.

The other 12 violations are the cases where the time T - t is too short (less than 2 days).

Since we have not found available data of bid-ask prices of the above options from CME, we then
have tested the bid-ask pricing mechanism of S&P500 index options operated by the system of market
makers of CBOE The data source is from Yahoo's finance quotes of the option prices from 07 December
to 08 May 2006. We have collected the prices of 5,000 time points, i.e., 5,000 different t among 100
trading days. We denote this pricing mechanism by O~T[X] for the ask price of an option X. According
to our point of view the bid price of the same X is -O;';r [- X] and thus the bid-ask spread is O~T [X]+
Our-X]. We have tested a total number of 589,360 inequalities of (5.1) and (5.2), with om1n in the
place of om. Only 1 case of violation appears.

We will report these test results in details in our forthcoming paper. [3].

Markovian pricing mechanisms We limit ourselves to consider, for each fixed maturity T, the
derivatives X depending only on the price ST, i.e., X is a path independent derivative. X is then in the
class of

X = <I>(ST) with <I> E L2(ST)

where L2(ST) denotes the collection of all real functions <I> defined on Rn such that <I>(ST) E L2(FT)'
A dynamic pricing mechanism 0 is called a Markovian pricing mechanism if for each 0 :s: t :s: T < 00

and <I> E L2(ST) there exists c/J E L2(St) such that Ot,T[<I> (ST )] = c/J(Sd. In other words, the price of a
path-independent option by a Markovian pricing mechanism is still path-independent.

Example 5.1. We consider a situation where the underlying price S is a diffusion process:

dSt = b(St)dt + A(SddBt, So = So ERn.

where b and A are given Lipschitz functions of Rn valued on Rn and Rnxd respectively. If a generating
function 9 has the following form:

g(t, y, z) = f(St, y, z),

where f is a Lipschitzfunction of (s, y, z) E Rn x R X Rd. By the nonlinear Feynman-Kac formula
introduced in [19, Peng 1991 J and developed in [18, Pardoux-Peng 1992J, for each option X = <I>( ST)
with smooth function <I> the price of the related g-expectation is

0f,T[<I>(ST)] = u(t, St)

where 1£ : R+ x Rn
f-----+ R is the (viscosity) solution of thefollowing PDE defined on (t, s) E [0, T] x Rn:

au 1 ~ T 02
1£ ~ au T

at + 2 i~l (A(s)A (S))ij aSiaSj + ~ bi(s) aSi + f(s. u. A (s)'\7u) = 0

with terminal condition u(T, s) = <I>(s). If St is a I-dimensional geometric Brownian motion, I.e.,
A(s) = o-s and b(s) = f.J,S,then the above PDE becomes

au 1 2 2 02
1£ au au

at + 20- s as2 + f.J,Sas + f(s. U. o-s as) = O.

The Black-Scholes formula corresponds to the case f = -Ty - (f.J, - T )0--1 z. We then have

au 1 2 2021£ auat + 20- S fJs2 - TU + TS as = 0, u(T, s) = <I>(s).



6 Characterization of g-pricing mechanism by its generating function 9

For a pricing mechanism, it is important to distinguish the selling price and buying price of a same
pricing mechanism, corresponding to the ask price and the bid price if the mechanism under investigation
is generated through the system of market makers of an option market (cf. [12] Sec. 6.5 and [16]). If
((])t,T[X] is the ask price at the time t of a derivative X with maturity T, then the bid price must be
-((])t,T[-X] and we have, in general,

Here we stress our point of view that, in fact, the ask price and bid price are produced by a single
mechanism, called bid-ask pricing mechanism of market makers. Our result of data analysis to test
the criteria (AS) of the domination condition (4.1) strongly supports this point of view. Moreover, this
analysis also supports our point of view that, for a well-developed market, there exist a function 9
satisfying Lipschitz condition (3.2) such that the corresponding ask-bid pricing mechanism is modeled
by the g-expectation ((])9 [.].

A rational dynamic pricing mechanism also possesses some other important properties, such as con-
vexity, sub-additivity. See [9], [22], [30], [13], [14] among many others. We will see that the generating
function 9 perfectly reflects the behavior of ((])9. This may play an important role to statistically find 9
by using the corresponding data of prices. In the following we provide several theoretical results with
proofs given in Appendix. This problem was treated also by [30], [13] and [14].

Proposition 6.1. Let g, 9 : (w, t, y, z) E S1 x [0, (0) x R x Rd ~ R be two generating functions
satisfying (3.2). Then the following two conditions are equivalent:
(i) g(w, t, y, z) ::: g(w, t, y, z), V(y, z) E R x Rd, dP x dt a.s.
(ii) The corresponding g-pricing mechanisms ((])9 [.] and ((])9 [.] satisfy

((])fT[X] ::: ((])fT[XJ, VO:S t:S T < 00, "IX E L2(FT)., ,

Corollary 6.2. The following two conditions are equivalent:
(i) The generating function 9 satisfies,for each (y, z) E R x Rd,

g(t, y, z) ::: -g(t, -y, -z), a.e., a.s.,

(ii) ((])f.T[·] : L2(FT) f-----> L2(Ft) satisfies,foreach O:S t:S T,

Proposition 6.3. The following two conditions are equivalent:
(i) The generating function 9 = g(t, y, z) is convex (resp. concave) in (y. z), Le., for each (y. z) and
(y, z) in R x Rd andfor a.e. t E [0, T],

g(t. ay + (1 - a)y, az + (1 - a)z) :S ag(t, y, z) + (1 - a)g(t, y, z), a.s.
(resp. ::: ag(t, y, z) + (1 - a)g(t, y, z), a.s.).

(ii) The corresponding pricing mechanism (Of,T['])O::::;t::::;T<oois convex (resp. concave), Le., for each
fixed a E [0. 1]' we have

((])f,T[aX + (1 - a) X] :S a0f.T[X] + (1 - a)((])f.T[XJ, a.s.

(resp. ::: a((])f.T[X] + (1 - a)((])f.T[X], a.s.)

for each t :S T. and X. X E L2(FT).



Proposition 6.4. The following two conditions are equivalent:
(i) The generating function 9 is positively homogenous in (y, z) E R x Rd, i.e.,

(ii) The corresponding pricing mechanism (())fT['] : L2(FT) f----* L2(Fd is positively homogenous: for
each O:S t:S T, i.e., (())fT[.\X] = .\(())fT[X],foreach.\ 2: 0 and X E L2(FT)., ,

Corollary 6.5. The following two conditions are equivalent:
(i) The generating function 9 is sub-additive: for each (y, z), (y, z) E R X Rd,

(ii) The corresponding pricing mechanism (())f.T[·]: L2(FT) f----* L2(Ft) is is sub-additive: for each
O:S t:S Tand X, X E L2(FT)

Proposition 6.6. The generating function 9 is independent of y if and only if the corresponding g-
expectation satisfies the following" cash translatability" property: for each t :S T,

(())f,T[O] == 0, VO:S t :S T.

Proposition 6.7. (())9 [.] satisfies the self-financing condition if and only if its generating function 9 satis-
fies (3.3)-(a).

yt == 0 == 0 + iT g(s, 0, Zs)ds -iT ZsdBs, t E [0. T].

Thus Zt == 0 and then g(t. O. Zd = g(t. 0, 0) == O.

Proposition 6.8. (())9 [.] satisfies the zero-interest rate condition if and only if its generating function 9
satisfies (3.3)-(b).

Proposition 6.9. The following condition are equivalent:
(i) For each 0 :S t :S T and X E L2(F}), the g-pricing mechanism (())f.T[X]is a deterministic number;
(ii) The corresponding pricing generating function 9 is a deterministic jitnction of (t. y. z) E [0. T] x
R x Rd.



Example 6.10. An interesting problem is: ifwe know that a pricing mechanism under our investigation
is a g-expectation ([])9, how to find the generating function g? If we limited ourselves to only take data
of prices quoted by markets, this is still an open problem. We now consider a case of "toy model" where
9 depends only on z, i.e., 9 = g(z) : Rd -+ R. We willfind such 9 by the following testing method. Let
Z E Rd be given. We denote Ys := ~,T[z . (BT - Bd], S E [t, T], where t is the present time. It is the
solution of the following BSDE

It is seen that the solution is Ys = z· (Bs - Bt) + JsT g(z)ds, Zs == z. Thus

([])f,T[z, (BT - Bd] = yt = g(z)(T - t),

Thus the function 9 can be tested asfollows: at the present time t: if the valuation ([])f T[z, (BT - Bd] of
(a toy model of) derivative z . (BT - Bt) is obtained, then g(z) is explicitly given by (6.2). We observe
that, in the case where S is a geometric Brownian motion, BT - Bt can be expressed as a function of
ST / St. But this cannot be applied to a general situation.

Remark 6.11. The above test is also applied for the case 9 : [0,00) x Rd -+ R, or for a more general
situation 9 = ,y + go(t, z).

An interesting problem is, in general, how to find the generating function 9 by a testing of the input-
output behavior of ([])9[.]? Let b : Rn f------. Rn, iT : Rn f------. Rnxd be two Lipschitz functions. For each
(t, x) E R+ x Rn, we consider the SDE of the form

X;'x = x +1s
b(X;,X)ds +1s

(j(X;,X)dBs, s 2: t.

This SDE is regarded as the equation of the price of the underlying stock. The following result was
obtained in Proposition 2.3 of [2].

Proposition 6.12. We assume that the generating function 9 satisfies (3.2). We also assume that, for
each fixed (y, z), ge, y, z) E D}(O, T) (the space of all Ft-adapted processes with RCLL paths). Then
for each (t,x,p,y) E [0,00) x Rn x Rn x R, we have

L2-lim ~[([])f HE[y + p' (Xi:E - x)] - y] = g(t. y, (jT(x)p) + p' b(x).
E--->O f •

We have our huge member of tests, using market data and numerical BSDE calculation technique,
strongly support that a the market ask and bid pricing mechanism of CME options on S&P500 is a
g-pricing mechanism. We have also proposed different types of generating functions 9 (convex function,
concave sublinear function, superlinear function) to be good candidates of different pricing mechanisms
for sellers, buyers, large investors and small investors. But to solve the problem how to test an spe-
cific financial company's pricing mechanism, we need more specific data which is, in general, a high
secret.
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