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MODELLING OF SELECTION AND MATING DECISIONS IN
TREE BREEDING PROGRAMS

Hardwood trees from the temperate forests of southern Australia are
an important source of timber for high quality paper. Two species in
particular, Fucalyptus globulus and Fucalyptus nitens are well suited
to this purpose and are now widely grown in commercial plantations.
These plantations have been established by professional tree breed-
ers using seedlings derived originally from broadly based collection
of seed in natural forests. To increase productivity it is desirable
to select trees that grow quickly and give high yields of top quality
timber. Nevertheless it is important to maintain genetic diversity
in the breeding population and thereby retain a robust capacity to
adapt to changing environmental factors. In this article we formu-
late a number of related mathematical models for the selection and
mating processes and discuss the consequences of these models. We
recommend a relatively simple scheme which can be implemented on
an IBM compatible PC using standard algorithms.

1. Introduction

Tree breeding aims to maximise the rate of genetic progress with each gener-
ation. To achieve this goal, tree breeders have to take a number of key decisions:

e which of the available trees should be selected for use in the breeding
program;

¢ to what extent should each selected tree contribute to the next generation;
and

e which mate pairs should be used.

After a brief review of relevant literature (Brisbane and Gibson, 1995; Jansen
and Wilton, 1985; Meuwissen and Woolliams, 1994; and Sedgley and Griffin,
1989) and discussion with representatives from the Cooperative Research Cen-
tre in Temperate Hardwood Forestry, the Southern Tree Breeding Association
and Northern Forest Products, the MISG team suggested three alternative mod-
els. The basic tree selection model was developed in detail and a corresponding
selection scheme has already been implemented using real data. This scheme
will
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o select the number of times each tree should be mated in order to maximise
the total breeding value of the selected trees subject to an appropriate
penalty for their collective pairwise relatedness.

Two other models were developed in principle. The entropy model makes novel
use of a standard entropy function to measure the genetic diversity of the breed-
ing population and a corresponding scheme would

e select the number of times each tree should be mated in order to maximise
the entropy of the selected trees while maintaining an acceptable total
breeding value.

The third model is more complicated but may be useful in the longer term
to predict the improvement in breeding values over a number of generations.
In recognizing that the breeding value for the progeny of a particular mating
is a random variable with expected value equal to the average breeding value
of the parents the MISG team realised that if a large number of progeny are
produced from each particular cross and only the best progeny are selected then
the expected breeding value of the selected progeny will be somewhat higher
than the average breeding value of the parents. The enhanced tree selection
model incorporates these ideas and a corresponding scheme would

e calculate the number of progeny to be produced and the minimum accept-
able breeding value for each cross in order to maximise the total expected
breeding value for the selected progeny subject to the incorporation of
sufficient genetic diversity in the progeny.

2. Measuring the genetic content of a population

We suppose the current population P, at time £ is descended from an original
population Py of N individuals denoted by a,, as,...,ay. Thus we write

Po = {al,az,...,aN}. (1)

Each individual «a is represented by a pedigree composed of an ordered pair of
pedigrees of the male and female parents respectively. Thus when a € P; and
B € P, we denote the offspring by a x 8 € P, and write

p(a x ) = (p(a), p(8)) (2)
for the corresponding pedigree. For the original population Py we write

p(a;) = J. (3)
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The genetic content v(y) = (v;(7)) € RY of each individual ¥ € P; is a measure
of the relative contribution of each member of the original population to the
pedigree of that individual and is calculated from the genetic content of the
parents by the formula

v(iax f) = —21-u(a) + %u(ﬂ). 4)

For the original population P, we assume that

1 0 0
0

V(al): . ,u(a2)= : ,""V(QN): (5)
0 0 1

which means we effectively assume that the original population is composed of
unrelated individuals. The genetic measure v(P;) = (v;(P;)) € RN of each
original ancestor in the current population P, is defined by

v(P) = 37 3 vla) (©)

a€EPy

where v(a) € RV is the genetic content of the individual a and where M; =
M(P;) is the number of individuals in the current population. It is easy to see
that

N
> vile) =1 (7)
Jj=1
for all a € P; and hence
N
Y vi(P) =1. (8)
7=1

The degree of relatedness of two individuals is measured by their common
ancestry and is defined by

N
a(a, B) = Y min(v;(a), v;(8))- (9)
7=1

If the genetic contents of a and 3 are equal then clearly a(a,8) = 1. Otherwise
0 < a(a, B) < 1. For our discussions we are assuming that the individuals in the
original population are completely unrelated with a;; = a(a;, a;) = 0 for j # 1.

The measurement scheme described above is illustrated by the simple exam-
ple in Section 8.



52 CRC in Temperate Hardwood Forestry

3. The basic tree selection model

We wish to select m trees from a population with M individuals in order to
maximise the genetic merit of the selection subject to an appropriate limit on
the relatedness of the m selected trees. We suppose that the population P = P,
is denoted by fi, ..., 8 and that we use m; clones of the individual §; for each
i=1,2,...,M. Thus we require

M
gm,- =m. (10)

We assume that the estimated breeding value of j3; is given by v; and define an
objective function

V = Zv,m, - kZ(Z a,]mj)
i=1 j=1
= va— k||Am|? (11)

where v = (v;) € RM, m = (m;) € RM, k € R with k > 0 is a known constant
and the symmetric matrix 4 = (a;;) € RM*M is the relatedness matriz defined
by

aij = a(Bi, B;)- (12)
The penalty term expresses the total pairwise relatedness of the selected indi-

viduals. It is convenient to define the associated relatedness matriz B = (b;;) €
RMXM by B = AT A in which case we can write

M M
V = Zv,m,—kZZm, ij T
i=1j5=1
= va—kaBm. (13)
If we define
= (14)
=

then we can rewrite the objective function as

¥ = V(x)
M M
= mZv,z,—kaZZz bijz;
1=1 j=1

= mvTx — km*xT Bx (15)
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where x = (z;) € ®M and we seek to maximise V(x) on a region F C ®M
defined by the constraints

M

Yozi=1 (16)

=1
and z; > 0 for each : = 1,2,..., M. If we regard the variables z; as continuous
variables then the problem can be solved using Lagrange multipliers. Because
V(x) is concave and because x is restricted to a convex subset 7 C RM any
local maximum is also a global maximum. Because V(x) is continuous and F is
compact there must be at least one point where the global maximum is achieved.
We define a Lagrangean function

vV = VY(x)
M M M M M
= m Zv;z; - kaZz;bgjzj + A(1 —Zz,-)-l—Z‘lr,-z,-
1=1 1=1 j=1 =1 i=1
= m [vTx — kmxTBx+ A(1-1Tx) + wa] (17)

where 1 = (1) € R and where ) € R, = = (7;) € RM are Lagrange multipliers
with A > 0, # > 0. By applying the Kuhn-Tucker equations
v _
oz;
for each 2 = 1,2,..., M and the complementary slackness conditions we obtain
necessary conditions for a local maximum. We have

0 (18)

M
v — 2kmEb,‘j:Bj -A+m=0 (19)

1=1
foreachi=1,2...,M and
M M
A1 - Zz;) + Zﬂ',‘z; =0. (20)
=1 =1
In vector form we can write
v—-2kmBx-A1+7=0 (21)

and
A(1-1Tx)+ xTx=0. (22)

Let § C F be the solution set. If we assume that x,, x; are distinct solutions
with V(x5) = V(xp) = Vinar then we have

v—2kmBx, — A1+ 7, =0 (23)
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and
v—2kmBxy; — A1+ 7, =0 (24)

and some elementary manipulations allow us to deduce that
2km(x, — xb)TB(xa —xp) + walxy + mp %, = 0. (25)

Since each term in this equation is non-negative it follows that each term is zero.
Now we can see that

V(0x, + [1—0]xp) = vI(0x,+[1-0]xp)
—km(0x, + [1 — 0]xp) T B(6x, + [1 — 6]x3)
= OV(xa)+ (1 - 0)V(xp) + km(x, — x5)T B(xa — xp)
= Vinas (26)

for each 6 € [0,1] and hence each point between x, and x; is also a solution.
Therefore the solution set S is convex. To find S it is necessary to solve equa-
tions (21) and (22) but we can only do this if we first nominate which variables
z; will be zero at the solution point. These variables are then deleted from the
problem and we reformulate a corresponding reduced order problem in the same
form as the original. For convenience we will use the same notation for the re-
duced order problem. We can now assume that all variables z; are non-zero at
the solution point. We decompose each vector into orthogonal components in the
null space N = N(A) and the range space R = R(AT) where 4 € RI*L is now
the reduced order relatedness matrix. For each u € R we write u = u,, + u,.
Because x > 0 it follows that @ = 0 and the equation

v—-2kmBx—-2A1=0 (27)
can be rewritten as
(Vo +v,) — 2kmATA(x, + %x,) — A1, +1,) =0 (28)
from which we deduce that
Vp—Al, =0 (29)
and
v, — 2kmAT Ax, — A1, = 0. (30)

If equation (29) is satisfied we can calculate a unique solution for x, in equa-
tion (30). For every feasible x = x,, + x, € F we can use equation (30) to deduce
that

A = v, Tx, — 2km||Ax,|? (31)
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and hence

V(x) = vIix-— km|Ax|?
voIx, + v, x, — Icm||Axr||2
km||Ax, |2 + A(1.Tx, + 1,.7x,)

= km|Ax,|*+ ) (32)
and the solution set is given by
S = {x|x = x, + x, where x, e N} N F. (33)

If this set is empty then it means we have nominated the wrong variables to
take zero values and we must begin the solution process again with a different
set of zero variables. If S is non-empty it is still possible that we may have set
too many variables equal to zero and may not have found the complete solution
set. In general we need to find feasible solutions which minimise the number of
zero variables.

The solution scheme is illustrated by the simple example in Section 9.

The choice of the constant k in the penalty term will influence the solution.
We can consider the problem from a different point of view. Suppose that the
matrix B is positive definite. Then equation (27) can be solved to give

X = Xi
1 o
= 2kmB (v — Axd). (34)
Since condition (16) can be rewritten in the form
17x, =1 (35)
we now have 1
L rpaa. _
—17B7 (v - M1) = 1. (36)
From equation (27) we deduce that
vIxi — 2kmxi T Bx — A = 0 (37)
and if we define
U = VTXk (38)
and choose k so that
xi I Bxy =7 (39)

where r is the acceptable level of relatedness and is essentially the risk factor
then equation (37) shows that

Ak = Tk — 2kmr. (40)
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If equation (34) is used to rewrite equation (39) in the form

1 "
W(V - Akl)TB l(V - Akl) =7 (41)
then equations (36) and (41) can be solved by a suitable iterative scheme to
determine k and Ag.

Note that in the case where the population consists of a number of unrelated
families the matrix B takes a block diagonal form and hence B~! also has this
same structure. It follows from the above formulae that the determination of x
can be made separately for each family.

4. A practical solution algorithm for the basic tree selection model

If we define the relatedness vector g = (g;) € R by setting

g = Bm
= mBx (42)
then
M
gi =Y bim, (43)
=1

is the relatedness coefficient for the tree 3;. We can rewrite the objective function
in the form

M M
V = Z:(v,' -k 2_: b;jm;)m;
M ”
= E(v,- — kg;)m;
=1
= (v-kg)'m (44)

and suggest a possible elementary procedure for calculation of the maximum
value of V subject to the constraint (10) and such that each component of
m = (m;) € ®M is a non-negative integer. Essentially we start from the most
highly valued trees and consider the vector

w=v-kg (45)

of modified breeding values where the modification is a penalty for the degree of
relatedness in the selected trees. For convenience we will assume that v; > v, >
... 2 vp. We calculate

V=wim (46)
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and apply some scheme of iterative improvement. The most rudimentary scheme
would simply replace one currently selected tree with a tree that is not currently
selected. To this end we take p < ¢ and suppose that m, is reduced by 1 and
my is increased by 1. We have

mT:(ml,mz,...,mp,...,mq,...,mM) (47)

and
(m+ Am)T: (my,ma,...,mp—1,...,mg+1,...,mpr) (48)

and hence

AV = [v-kB(m+ Am)/’(m+ Am)- [v - kBm]'m
= (vg — vp) — 2k(gq — gp) — k(bgq + bpp — 2bpq)
= (vg = vp) — 2k[(gq — gp) + (1 — byg)] (49)

where g, and g, are the relatedness coefficients for trees 8, and 8, before the
change. Since we assume that v, < v, then we see that AV > 0 only if tree 3,
is less closely related to the other trees than is tree f3p.

Two simulated annealing algorithms which we call SingleTree and Multi-
pleTree have been written to perform the required optimisation and have been
tested on real data.

In Single Tree we allow only m; = 0 or m; = 1 but the heart of both programs
is the same: initially we choose m so that condition (10) is satisfied. In other
respects the non-negative integer components of m are arbitrarily chosen. For
each pair of suitable components p and ¢ we investigate decreasing m, by 1
and increasing m, by 1. This is restricted to p such that m, > 0 and, in the
case of SingleTree, to g such that m, = 0. The change AV in V is computed
by equation (49), and the change is made if AV > 0. On the other hand, if
AV < 0, the change is made with probability given by

e“(Av)2
vsC +1

where s is the number of steps already taken for which AV < 0 and C is initially
set to 0.02, for fairly slow cooling. There is nothing magical about this cooling
schedule; the main thing is that p(AV, s) has the desirable features of going to
0 rather slowly as s increases and rather quickly as |AV| increases.

p(AV,s) = (50)

A sample set of test data was supplied containing 730 trees with some in-
formation on their pedigrees that permitted calculation of a nominal modified
relatedness matrix B = (b;;) in equation (12). SingleTree and Multiple Tree were
tested in two sample situations, both of which appear to find the true optimum
easily.
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Single Tree was used with m = 20 and M = 730, and with k£ = 0.1. Starting
with two permutations of the input data, firstly unsorted and secondly sorted by
v; > vi+1 SingleTree gave the same solution after only about 200, 000 iterations,
taking less than a minute and with no further improvement after an overnight
run.

In MultipleTree we allow m; to take any non-negative integer values. This
program was tested with m = 60 and M = 730 and a range of k values from 0.01
to 0.2 and seemed to give consistent results. Later tests with different cooling
functions showed that choosing C ~ 10 gives the best results for k up to about
0.1. More extensive testing should be done to check the most appropriate values
for C. Different cooling schedules all seemed to give the same apparently optimal
solutions after a few hundred thousand iterations and these solutions could not
be improved upon even if millions of iterations were tried.

In summary, the fact that MultipleTree gives the same solution when run
with different cooling schedules suggests that for these problems the simulated
annealing method is actually finding the true maximum of the objective function,
and in a very short time. The time was less than a minute for the values of k, M
and m in the test examples mentioned above. This is to be expected when the
state space is asymmetric. In this regard the region of the space containing the
trees with the highest breeding values, where the optimum would be expected to
lie, acts in an attractive manner. For the same reason, one would expect genetic
algorithms also to perform well.

Further evidence that the true maximum is being found by simulated anneal-
ing was obtained when the SingleTree problem was reformulated as an integer
linear programming problem. Since the linear programming algorithm uses ap-
proximately M?/2 variables it was necessary to make the problem size more
managable by restricting our attention to the top 100 trees, ranked by v;. This
was regarded as a fairly safe restriction since with m = 20, all trees used in the
solution found by Single Tree were ranked in the top 80 trees. After several hours,
a standard package confirmed the solution found by Single Tree. The Multiple-
Tree problem is much harder to write as an integer linear programming problem
because each quadratic term b;;m;m; in equation (13) can take on more than
two possible values.

5. Existence of a solution in non-negative integers for the basic tree
selection model in the case of a population of unrelated clones.

It is common practice in seed orchards to plant equal numbers of essentially
unrelated clones. We ask whether the expected breeding value could be increased
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by using more of the superior clones. In this case we have
a;; =0 (51)

for j # i and the objective function defined in equation (11) reduces to
M
V= Z[vim; — km?] (52)
i=1
and is a special case of the more general form
M
V =) [vim; — f(m))] (53)
1=1

which must be maximised subject to condition (10) and subject to the restriction
that each component of m = (m;) € R is a non-negative integer. Once again
we assume that v; > v, > ... > vpy. If m € RM is a feasible selection and if
my, < mg, for some p < ¢ then we can see that the new selection with m, and
m, interchanged will change V' by an amount

AV = (vp — vg)(mg — mp). (54)

If v, > vy then AV > 0 and the new selection is better. Since there are only
a finite number of alternatives it follows from this reasoning that an optimal
solution exists and that the optimal solution will satisfy

m>my>my> ... > my. (55)

This problem can be solved very effectively using dynamic programming with
the total number of iterations required of the order of M3. Although it is not
necessary to argue that condition (55) holds it is nevertheless true that the use
of this condition makes the solution scheme more efficient. We formulate the
problem in the following way. Let P(j,t) denote the problem of selecting the
numbers

mj+12mj+22..._>_mM20 (56)

with

E m; =1 (57)
so that
Vi= ) [vimi — f(m)] (58)
is maximised. If we write

V(j,t) =max{V;|mj;1 >...2mpy >0 and mj;1 +...+ muy =t} (59)
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then it is clear that
V(j,t) = maxp,;,, [viyimip — f(mi)]+ V(i + 1,t — mji,). (60)

The dynamic programming solution uses equation (60) to solve the problems
P(M,t), P(M —1,t),...in sequence for all t = 0,1,...,m.

6. The entropy model

The genetic diversity of the current population P; can be measured by the
entropy which is defined by
N
H(P;) = (1)) vj(P:) logv;(P:) (61)

J=1

where v(P;) is the genetic measure defined in equation (6). For the original

population we have
1

vi(Po) = (62)
for each j = 1,2,..., N and hence
H(Po,) =logN. (63)
It is clear that
H(P:) < H(Po) (64)

and although it is not true to say that the entropy of the population decreases
with time we observe that if

vi(Py) =0 (65)
for j = j1,J2,--+,Jn then

H(P,) < log(N — n) (66)
for all s > t. These ideas are also illustrated by the simple example in Section 8.

As before we suppose the current population P = P; is denoted by f4,...,8m
and that we use m; clones of the individual §; for each 7 = 1,2,...,M. We
suppose that the genetic content of 3; is denoted by

v(iBi)=| . (67)
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and we note that

N
Z”‘j = 1. (68)
J=1

The entropy of the effective population is given by

N
H=(-1))_v,logy, (69)
i=1
where -
v = ZV,']'Z,'. (70)
=1

It is convenient to begin by solving an unconstrained problem. We show that
the entropy of the effective population is maximised by choosing z,23,...,Zp
in such a way that

1
M=v = =N = o (71)
Because of the conditions (10) and (68) we have
H = H(zl,zg,...,ZM_l)
N
= (1) )_vjlogy; (72)
Jj=1
where
M-1
vi= D (vij — vm;)ei+ vm; (73)
i=1
for each j =1,2,...,N — 1 and where
N-1
vy =1- Z vj. (74)
j=1

Now we calculate

N-1 ‘
7a; = (1) s iy (2 (75)

and solve the equations
0H

0z; -

for eachi=1,2,...,M — 1. It is clear that this gives M — 1 linear equations in

the N — 1 unknowns
" UN-1
log(VN),...,log( n ) (77)

0 (76)
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If M > N and the rank of this set is equal to N — 1 then the unique solution is

given by
log ("—J) =0 (78)
VN

for each 7 = 1,2,..., N — 1. Thus, in this generic case, we can see that H is
maximised when v = v, = ... = vy.

Strictly speaking we should solve the above problem subject to the addi-
tional constraint x > 0 but because the solution is not conditional on these
restrictions we can formally omit them. This is an important point in relation
to our subsequent arguments with the real constrained selection problem.

We now wish to maximise the entropy H subject to the constraints V' > V,
where V} is the minimum allowed total breeding value, x > 0 and 17x = 1. We
define a Lagrangean function

H = H(zlazb""z}\{—l)
M-1 M-1
H+e|Y (vi—om)zi+om— Vo[ + Y (A — Ap)zi + Ay (79)

=1 i=1

where k& € ® and A € RM are Lagrange multipliers with £ > 0, A > 0 and apply

the Kuhn-Tucker equations
oM

Oz;
foreachi =1,2,..., M —1 and the complementary slackness conditions to obtain
the necessary conditions

=0

(-1) Z (v — VMJ)log( ) +r(vi—vm)+ A -A =0 (80)

for eachi=1,2,...,M — 1 and

M-1
Z(v,-—vM):c;+vM—V0] E Ai — Apm)zi + Am = 0. (81)

=1

Therefore we again have M — 1 linear equations in the N — 1 unknowns

(). (52)

but since the equations are now non-homogeneous we can no longer expect an
unconstrained solution. In fact, if we assume that A\; = 0 for NV different values
of i we can obtain a solution for the corresponding z; in which each of these z;
is strictly positive. All other z; are set to zero and the corresponding A; and &
are determined from the remaining equations.
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The important insight is that we expect only N of the variables z;,...,z
will be non-zero.

More information about this technique can be obtained from a technical
report by Howlett et al. (1996).

7. The enhanced tree selection model

In the previous models an implicit assumption about breeding values is that
the breeding value of the offspring of a particular mating is the average of the
breeding values of the two parents and hence we have assumed that

o8 x B) = 39(6) + 59(8;) (83)

This is tantamount to saying that the best parents will produce the best offspring
and on average this is observed to be true. Although this is a useful assumption
in models with an unbiassed selection of the next generation of breeding trees the
assumption is not appropriate when we choose only the best progeny from each
cross and when we wish to make projections about the consequent improvement
in breeding values over several generations.

It is clear that the genetic structure of the offspring is not determined
uniquely for each mating pair. Each individual in the population carries a fixed
number of chromosomes and the offspring of a particular cross receives these
chromosomes from one or other of the parents. The allocation of the chromo-
somes is essentially a random process. If there are k different chromosomes then
there are 2* different genetic combinations that could be obtained. It is there-
fore more reasonable to regard the breeding value V;; for the progeny £; x B,
as a random variable. Since the breeding value is determined by a large num-
ber of independent characteristics we could assume that V;; is a normal random
variable with probability density function given by

fii(v) = Nlpij,0i%)(v)

2
1 1[v—p;
= ex e | S
oi;V 2w g l: 2 ( Oij )

Appropriate values for the parameters should really be determined by experi-
ment. On the other hand we could assume that the breeding value V; of each
individual B; is a random variable and that the random variable V;; is deter-

mined from the random variables V; and V; by a simple formula. Indeed, if we
assume that | "

Vij= Vit 5V (85)

(84)
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then we could argue that
pii = E[Vi)
1 1
= E[EV' + §VJ]

1 1
= ok F ot (86)

and
0i;° = E[(Vij — pis)’]
1 1 1
= E[3(Vi- i)' + (Vi - 1i)’ + 5 (Vi = 1) (Vi = p;)]
1 1 1
~ ZU,'Z + ZUJ‘2 + §aij0'i0'j (87)

where A = (a,;) € RM*M js the relatedness matrix and where we have assumed
for the sake of argument that

E[(Vi — pi)(V; = pj)] ~ aijoio;. (88)

If n,; is the number of progeny produced from g; x 8; and if w;; is the minimum
acceptable breeding value from this cross then the expected number of progeny
selected for the next breeding population will be given by

mi; = n;Fi(wij)

= ny /oo fij(v)dv (89)

and the associated expected mean breeding value will be

I
—
.8
<
=h
<.
o
&
S

‘U,J

_ \;;Lﬂ-exp [_% (E%J_“i) ] + pi; Fij(wij). (90)

We need to select n;; and w;; for 2,5 = 1,2,..., M and ¢ < j such that we
maximise the overall expected breeding value

E = Z ™m;;v;j (91)

1<i<G<M

subject to the equality constraint

Z m;; =m (92)

1<i<i<M
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and the inequality constraint
H(P,) > logr (93)

where m is the total number of progeny we wish to select, P, is the population
of selected progeny and r is some fixed number with 0 < » < N. This problem
can be formulated as a standard finite dimensional constrained optimisation
problem.

The main importance of this model is that it is not only a model for making
a good selection for the next generation of breeding stock but is also a model
that allows us to estimate the expected improvement in the breeding population
from one generation to the next. This could be useful for forward projections
concerned with the economic viability of the breeding operation.

8. A simple example

Let Py = {a;,as, a3} and suppose that the following individuals are added
to the population

ay = a1 X g,
as; = a4 Xaz= (al X a2) X a3, (94)
ag = asXaz=((a1 X az) X az) X az.

The pedigrees of each individual are
pla1) =1, plaz)=2, p(as)=3, (95)

and
p(as) =(1,2), plas)=((1,2),3), plas) =(((1,2),3),2);  (96)
and the genetic contents of each individual are

1 0 0
viy)=10 |, wvla)=|1], vias)=] 0], (97)
0 0 1
and
3 )
v(iag) = %V(al) + %V(QQ) = % R
0 )
)
vias) = %u(a4)+%u(a3): % ;
L ()
v(as) = Eu(a5)+—2—u(a2)= 3 |- (98)
\ i/
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The genetic measure ¥(P) = (v;(P) € R* is given by

1 1 1
v(P) = -6‘(1+5+Z+

1 1 1

1 1 1
n(P) = (+5+7)=5;

1,8
8 16
5,_19
8’ 48
7
24"

(99)

The relatedness of individuals in the current population is defined by the relat-

edness matrix A € R6%6 given by

1 0 0
01 0
0 0 1
A=
7 70
1 1 1
4 1 32
I 5 1
8 8 1
and the entropy is
5 16 19
H = —1 — —1
16 % ( 5 ) T
~ 1.0897.

Note that

1 1
2 4
1 1
2
03
}5
51
5 5
8 8

*(5)

= 00|00 Ul | =G0 |00 | =

7

+ —1lo

24

Hy =log 3 =~ 1.0986.

9. Another simple example

Consider a population

P= {:61, ﬂ2a ﬂSa /34}

with v; = v = 6, v3 = 4 and v4 = 1 and with relatedness matrix

QO = =
(=

If we choose k so that km = 2 then

V =6(z; +22) + 423+ 24— 2 [2(21 +z2)% +z3% + 242]

(=T — I 1]

oo O

d

24
7

)

(100)

(101)

(102)

(103)

(104)

(105)
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and
V=vV+rx1-1Tx)+xTx (106)
and if x > 0 then o = 0 and the Kuhn-Tucker equations give
v—4Bx - A1=0. (107)

If we wish to resolve the various vectors into orthogonal components in /' and
R then we have

[ 6

v, =0, vV, = Z
\ 1
x) —zx2 g_—l;_:cz
—-1:12+:r:2 1tz
Xy = (2) ’ Xy = 223
0 Ty
[ 1
1, =0, 1, = i . (108)

\ 1

In this case equation (29) is automatically satisfied and equation (30) becomes

6 2200 ate 1
6 2200 e 1
s *l o010 zs | A1 [T (109)
1 0 001 T4 1
which gives
6=2
62
x =] 5 (110)
122
4
We can now use condition (10) to calculate
1
. f
A=- and x, = 49 (111)
S 5
o
20
which is not feasible. If we write
1
%
en=| V2 (112)

[ =)
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then we find that the solution set
S = {x|x = x, + fe,, for 6 € R} (113)

does not intersect the feasible set . On the other hand if we assume that 24 = 0
and delete z4 from the problem then equation (30) becomes

6 2 20 fit52 1
6 | -4 2 20 itz Xl 1 =0 (114)
4 0 01 z3 1
which gives
6-A
6
X, = ETH (115)
4-2
and we can use condition (10) to calculate
1
4
A=2 and x, = % (116)
2
which is feasible. If we write
1
\/_%
en=| —7 (117)
0
the entire solution set is
S = {x|x = x, + fe, for 6 € R} (118)
and the set of feasible solutions is given by
2 V2
SNF={x|x=x,+0e, forall §¢ [—%,%]} (119)

with V(x) = Vipge = % forallx e SN F.
10. Discussion

In summary we simply observe that The basic tree selection model has been
fully analysed and tested and appears to offer an effective selection procedure
for the next generation of breeding stock. The entropy model although not fully
developed offers an alternative procedure that we believe would simply change
the emphasis of the selection rather than the nature. The enhanced tree selection
model is a proposal that could be used as a basis for a more comprehensive scheme
that is concerned with longer term analysis over several generations.
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