
DESIGN AND LOADING OF

DRAGLINE BUCKETS

Draglines are an expensive and essential part of open cut coal mining. SmaIl
improvements in performance can produce substantial savings. The design of
the bucket and the way in which it fills with overburden are very important to
the overall dragline performance. Here we use a numerical model to simulate
this filling process and to differentiate between the flow patterns of two different
buckets. Extensions to the model are explored.

Draglines are used to remove the overburden, that may be up to 50 m in depth,
exposing the coal deposits beneath in open cut coal mining. They use huge buckets, up
to 100 m3, which are dragged up the sides of the pit and fill with pre-blasted overbur-
den. There are over 60 such large walking draglines operating in Australia. They are an
expensive and essential part of open cut coal mining. It is estimated that a 1% improve-
ment in dragline performance would save tens of millions of dollars annually. Their
performance is affected by many factors, including how the dragline is operated, where
the material is taken from and where it is deposited, and the positioning of temporary
bridges. Here we study the actual filling process of the bucket.

The aim of this Study Group problem was to determine whether the filling of
a dragline bucket can be simulated using a modern particle based computer code and
to evaluate the potential of such numerical models in suggesting bucket modifications
that could lead to improved designs.

The computer code used follows the motion of every particle in the system, pre-
dicting their trajectories and collisions, both with the bucket and with other particles.
It has been applied successfully to modelling long run-out landslides and grinding pin-
mills (Cleary, 1991). For industrial applications, the method must be able to model
complex boundary geometries. This capability has been added to the code specifically
for this application. However, it is sufficiently general to allow modelling of a wide
range of other applications.

We examined various aspects of draglines to determine which ones are impor-
tant in the modelling. We also explored the relationship between rheological properties
of the spoil material and particle properties in the model. The numerical method and
collision model are described as are the extensions required to implement the com-
plex boundary geometries. We also examined a range of further extensions that would
enhance the applicability and range of applications of the model.



Finally we present simulations for two different bucket designs, using both uni-
form particles and particles with a moderate size distribution, and intetpret these results.
Validation and applicability of these modelling techniques to improvement of bucket
design and operation are discussed.

Draglines are huge earth moving machines. They operate by lowering a bucket
to the surface of the overburden to be excavated and dragging it along the slope towards
the machine. A typical dragline operation is shown in figure 1. As the bucket, shown
in figure 2, moves across the ground, its teeth bite into the rock and earth, breaking
and loosening it. This material is then lifted by the teeth and the front lip of the bucket
and flows inside, eventually filling it. The bucket is then lifted as the dragline rotates.
Finally, the spoil (the material in the bucket) is dumped onto a spoil pile. This is
located in a previously mined area. The dragline excavates down to the coal seam,
which can then be mined, once it is fully exposed. The dragline walks slowly along the
edge of the pit. More detailed information on the actual operation of the draglines can
be found in the reports of the other two dragline problems in these Proceedings.

Figure 1: A cross-section schematic diagram of a walking dragline removing overbur-
den.

This problem does not deal with the overall operation of the dragline, but con-
centrates on the actual filling process of the bucket. Improving the performance of
the bucket is only one of many aspects that should be considered for improving the
efficiency of the entire operation.

In this work we examine the filling of two different bucket designs. The first, an
Esco bucket, is about 4.2 m long (from the lip to the back) and 2.5 m high at the back.



Figure 2: An actual bucket is pictured as it is lowered to the ground in preparation for
dragging.

The second, a BE lIPS bucket, is about 5.6 m long and only 1.5 m high at the back. It
is the height of the back that is important in these two dimensional calculations, rather
than the height of the sidewalls. Figure 3 shows side views of the two buckets and the
expected spoil profiles from wode done by ACIRL.

Figure 3: The two bucket designs, ESCO and BE lIPS, used in the simulations. They
also show the expected spoil profiles.

Aspects of bucket design and filling that were identified as being very important
to the performance of the dragline were:

• The teeth on the front of the bucket. The purpose of the teeth is to break the rock
apart and to begin lifting the overburden into the bucket. The purpose of the lip
is to lift the remaining material, between the teeth, into the bucket.

• The lip/teeth geometry. The ratio of lip width to tooth width, the length and attack
angle of the lip and the teeth are all expected to be important to the performance
of the bucket. To evaluate these effects a three dimensional model would be
required. Given the regular nature of the teeth, this would best be handled by
using periodic boundary conditions in the transverse direction and only modelling



the front section of the bucket. This would reduce the computation to a feasible
size.

• The overall width/length ratio of the bucket. This is constrained by the desire to
use the smallest amount of steel in the bucket, thus maximising the amount of
material moved for a given amount of lifting power. In real bucket filling one
observes that, in the absence of very large rocks, the bulk flow into the bucket is
relatively two dimensional. That is, the motion in the transverse direction across
the bucket is small.

• The material properties of the spoil varies substantially, depending on the type
of material, the blasting, water content, and whether it is being rehandled. Re-
handled material has a much higher fines content and generally has a wider size
distribution. It was concluded that the case of filling with relatively large particles
was more important than the cases involving large fines content.

• The bucket sinks into the ground as it fills, requiring increasing tension in the
upper cables in order to prevent the bucket from burying itself. The bucket angle
changes in response to variations in the balance of the array of forces that act
on the bucket. A bucket and all these forces are shown in figure 4. The forces
include the tension in the drag lines T1, the weight of the bucket Wb and the
weight of the spoil in the bucket Ws and its distribution, the collisional force of
the particles on the lip and teeth of the bucket Fe and the force Sr applied to the
back of the bucket by the spoil. This is the opposite force to the one applied
by the bucket to the spoil that slows its movement and causes it to stop in the
bucket. Precise details of the rigging and support lines vary from one bucket
and operation to another. Here we combine all the forces from the rigging into
the force Tz. For our simulations, with fixed buckets, the precise details of Tz
are unimportant. They would, however, be crucial in any simulation where the
bucket moved dynamically. The moments, around the center of mass of the
bucket, generated by these forces determines the rotational motion of the bucket.

• Cohesive forces between particles are important for between one third and one
half of all materials handled. These materials have significant clay contents and
stick together when compressed. This has a strong effect on the spoil profile in
the bucket and more importantly on its density. In particular, cohesive materials
are found to be more dense towards the back of the bucket than they are at the
front. This relates to the voids being squeezed out and being unable to reform
because of the plastic nature of the material.

• The remaining half to two thirds of all material handled is friction dominated.
Here cohesive forces are negligible or unimportant. This type of material is ideal
for simulation with the present code.



The most important parameters that are relevant to dragline operation are given
below. These are used either as input to the model or are to be compared with the
output of the model to help in its validation.

Dragline/bucket speed
Average slope angle
Average bucket length
Drag length
Filling time
Average spoil density
Typical angle of repose
Internal angle of friction

1.75 - 2.0 ms-1
22°
5m
4-6 bucket lengths: 20 - 30 m
10 - 20 s
1.6 g/cm3

37 - 4QO
40°

Figure 4: The forces that act on the bucket and detennine its angle and motion. T2

represents the combined effect of all the forces applied by the rigging to the bucket and
is not intended to model the entire interaction.

The modelling technique is a soft particle granular flow method. It has been
successfully used to simulate long run-out landslides and grinding pinmills (Cleary,
1991), ice pack behaviour (Hopkins, 1991), rock fracturing (potapov et a/., 1992) and
many other applications. Other collision models, such as the hard particle model, are
available but less suited to this application.

• All the forces on the particles are evaluated efficiently using the near-neighbour
list.



A search grid with cell dimension Ie./I = a dmiJ vfi is constructed to cover all the
particles. Here dmm is the minimum particle diameter in the system and 0.8 < a < 0.95.
This ensures that only one particle can have its center in each cell at a given time. This
search grid is then used to build a near-neighbour interaction list. The particles are all
labelled with an integer index. The labelling order is unimportant. Consider a group of
circular particles (including particles with the labels i,j and k, where j < i < k). Figure
5 shows such a situation with the search grid overlayed.

The search is a two stage operation. Firstly, all the particles are mapped onto an
integer array. Each array location, corresponding to a cell, stores either 0 (no particle)
or a positive integer (the particle index). Appropriate inverse maps are also constructed.

For the second stage, consider the lightest shaded particle i. Using the array
from the first step we can determine which cell this particle resides in. An appropriate
number of cells ne around this cell (indicated by crosses in figure 5) are examined
by looking up the contents of the integer search grid array constructed earlier. Here
ne = 1+ int ((l + ~)(ri + rmax)/Ie./I), where 0 < ~ < 0.1, ri is the radius of particle i and
rmax is the radius of the largest particle. For uniform particles this is two cells. This
represents the maximum number of cells that must be searched in order to guarantee
that every collision, even for non-uniform particles, is detected.

If the array contains a zero for a particular cell then the cell is empty. If it is
not empty, the particle index k (belonging to the slightly darker particle in figure 5) is
returned. If the distance between the centers of the two particles is small, !xi - Xtl <
(1+~)(ri+rt), then the pair of particles should be considered as candidates for collision.
If k > i then the pair of indices are added to the near-neighbour list. Since the order
of particles in the pair is unimportant, the inequality is used to ensure that the pair is
added to the list only once. In the example above, the particle pair (i,j) has previously



been added and this time is omitted. The darlc shaded particles lie outside the search
region, indicated by the crosses, and are not considered in the interaction calculations.

The near-neighbour list is rebuilt every ns timesteps. ns can either be specified
or calculated dynamically using a worst case overlap criterion.

All previous applications of this method used very simple boundaries. These
were either periodic in one or both dimensions or consisted of one or two long flat
plates. These normally represent the ground and their only function is to support the
flowing granular material.

For applications such as modelling dragline bucket filling, we need to be able to
model objects with complex geometries. This requires a powerful, flexible and con-
venient way of prescribing and handling these boundaries. These facilities have now
been added to the codes. Nearly arbitrary shaped boundaries can now be specified as
a sequence of piecewise linear and circular segments. These can be linked together
to form almost any shape. In this implementation the boundaries are all fixed. The
generalised boundary segments affect the code in only the first and second parts of the
algorithm.

In the search phase, a virtual marlcer particle is placed in each cell through which
the boundary center line passes. This involves calculating the intersection of the bound-
aries with the search grid. This is shown in figure 6 for both boundary types. A cross
marlcs each of the cells into which a virtual marlcer particle is added.

The boundaries have a thickness that can be specified. This has no effect on the
particle-boundary interactions, except to determine where they occur. The boundaries,
even thin ones, are rigid but slightly squashy. Here we make them the same diameter as
the particles. The boundaries also have curved ends. This eliminates difficulties with
particles striking sharp comers on the boundary. The search algorithm detects boundary
particles in the same way it detects normal particles, without any modification.



The complexities of the search algorithm are necessary to reduce the computa-
tional overheads involved in calculating the collisional forces. If a straight-forward N-
body calculation were performed then the number of operations required per timestep
would be proportional to N'l. For even moderate particle numbers N this becomes
prohibitively expensive. Using the above search procedure the number of operations
is proportional to (d",ddmin)2 N. For uniform sized particles the variation reduces to
O(N). That is, the computational time increases linearly with the size of the simulation.
For very large size distributions, the cost of the search can also become very expensive
as the coefficient varies quadratically with the ratio of largest to smallest particle sizes.
This makes modelling very small particles, such as fines, expensive, but not impossible.

The second part of the algorithm involves determining which particles are actu-
ally colliding and evaluating all the resulting collisional forces on the particles. The
particles are allowed to overlap as they move around. Thus the particles are described
as soft. Only particle pairs that are in the near-neighbour list are examined for potential
collisions. If the centers of the pair are closer together than the sum of their radii, then
the particles are overlapping and they are deemed to be colliding.

For each pair of particles that are actually colliding the resulting forces are de-
termined by the spring-dashpot model shown in figure 7. The normal force F" has a
spring component to provide the repulsive force that pushes the particles apart and a
dashpot that provides dissipation resulting in an effective coefficient of restitution. The
tangential component has a spring that is subject to the frictional limit of JlF", where
Jl is the dynamic friction coefficient.

Figure 7: The soft particle collision model. The normal force uses a spring and dashpot.
The tangential force uses a spring with a frictional limit.

For particle-particle collisions of circular particles the normal force is along the
line of centers and the tangential force is orthogonal to the normal force. Whenever
there is surface friction between colliding bodies, these bodies spin after impact. Since
our particles are circular it is necessary only to calculate the rotation rate for each parti-
cle and not their orientation. The spin of the particles is very important. It is a substan-
tial mechanism for the generation of granular temperature near boundaries (Campbell,



1990), and affects the dynamics throughout the entire system. Granular temperature is
a measure of the fluctuating component of the kinetic energy and is analogous to the
turbulent kinetic energy in fluid dynamics and to the normal temperature in thermody-
namics.

Figure 8: A particle approaching a linear boundary. A virtual particle, placed opposite,
represents the boundary.

For particle-boundary collisions a virtual boundary particle (as shown in figure
8) is placed directly opposite the incoming particle, so that their line of centers is or-
thogonal to the surface tangent. The normal vector and the virtual particle location
for a linear boundary is shown in figure 8. The curved boundary situation is compara-
ble. The forces are then evaluated in precisely the same way as for a particle-particle
collision (figure 7).

Complex boundary geometries require substantial book-keeping. This is the
main difficulty in their implementation. Calculating the location of the boundary parti-
cle, the normal, checking that each particle collides with only one virtual particle from
each boundary it contacts, are all straightforward, if tedious calculations. The impor-
tant aspect of this part of the algorithm is that it must also be efficient. We do not want
the boundary particle interactions to seriously degrade the overall computational speed.

The size of overlap between particles is determined by the stiffness k of the spring
in the normal direction. Typically average overlaps of 0.1 - 1.0 % are desired, using
spring constants of the order of 103 - 104• The damping coefficient is calculated from
the user prescribed coefficient of restitution e and the spring stiffness k by

In(e)1=-----====J 1C2 + In2(e)



This arises from the analytic solution of the collision equation for two such particles
with average mass maY' The particles all have the same damping coefficient. This
means that when using large size distributions, the effective coefficient of restitution
will be somewhat dependent on the diameters of the particles involved.

The third part of the algorithm involves simultaneously moving all the particles
in response to the forces that have just been calculated. This is done by integrating the
equations of motion:

Xi ui (1)

Ui E Fij +g (2)
j

Wi E Mij (3)
j

where Xi, ui and F ij are the cartesian position, velocity and collisional forces on
particle i, and £OJ is the rotation rate produced by the moments Mij. g is the gravity
vector. The integration scheme is a second order predictor-corrector. Between 20 and
50 timesteps are required to accurately integrate each collision. This necessitates very
small timesteps. If the integration is accurate then the coefficient of restitution from
which the damping coefficient was calculated is recovered. A higher order integration
scheme using a larger timestep may initially seem attractive, but the timestep is also
constrained by the requirement that for two particles moving together, the initial overlap
is at the very worst 10%. In many cases, this is a more stringent constraint on the
timestep than the earlier one. This removes the advantage of the higher order scheme.
Overall the timestep is given by

The second constraint uses the maximum speed in the entire granular flow Umax and the
diameter of the smallest particle dmill•

The inclusion of other forces on the particles is a relatively straightforward matter
of calculating these additional forces and including them in the force summation (2)
and (3) at each timestep.



The behaviour of the numerical model is governed by the parameters e, J.L and
k. They must be chosen so that the resulting particles behave in the same way as real
rocks. It is also desirable for large masses of these particles to have similar rheological
properties to those of the real material. Rheological properties are controlled by several
effects including those above, particle size and shape distribution, and other effects such
as cohesive forces, interstitial fluids, particle density distributions and many more. With
the exception of the cohesive force and the interstitial fluid, all the other effects can
presently be included in the calculation.

The difficulty is not in their inclusion, but in quantifying them. What particle size
and density distributions are needed? What is an appropriate coefficient of restitution?
How much does it vary? Little, if any, work has been done on this problem. Variations
in moisture content, density, chemical composition, hardness, brittleness, friction, elas-
ticity and microstructure can cause appreciable changes in the flow properties. There
is no established method of completely characterising particulate materials or relating
them to our model parameters. At present there is no substitute for comparison with
experimental measurements for the purpose of calibrating the model to the specific
material involved in the application.

It is not just a matter of being unable to relate the model parameters to the real
material. The real particulate material and the relationship between its characteristics
and the flow behaviour are not well understood. This is no longer the realm of the
mathematics, but of materials science.

A systematic study is required of the bulk properties obtained from different
particle configurations and properties and how they change as the model parameters
vary. This exercise is substantially beyond the scope of this workshop. Experimental
calibration to real materials is unavoidable.

Some parameters can be chosen sensibly. The friction coefficient can be reason-
ably given by J.L = tan 0, where 0 is the average slump angle of the spoil or the internal
angle of friction. Both are a measure of the relative surface friction between particles.
Rocks do not bounce very much. They are very inelastic. We chose a coefficient of
restitution of e = 0.1. Studies of long run-out landslides (Cleary, 1991) indicate that,
for small e, the flow behaviour is not sensitive to the precise value. The important thing
is that almost all the relative kinetic energy is dissipated in every collision. This highly
dissipative environment tends to make the active regions quite small. The areas of
high granular temperature are small. The flow tends to have liquid rather than gaseous
behaviour. Substantial solid or crystalline regions are anticipated.

The size distribution is expected to play an important role in the flow behaviour.
Uniform circular particles exhibit little resistance to shear forces. The layers of the



crystalline microstructure slide easily over each other. Materials with non-uniform size
distributions have much higher resistances to shear. The internal friction angle of the
spoil material is similar to its slump angle. This suggests that the geometrical shape
effects on the material's flow pattern are not significant.

Fines are a computational difficulty. The computational time required is pro-
portional to the square of the ratio of the largest to the smallest particle diameters.
Resolving dust is therefore very expensive. Alternatives to actually modelling the fine
particles are ignoring them, treating them as an interstitial fluid or treating them as a
lubricant. The last of these possibilities would manifest as a reduction in the magnitude
of the dynamic friction from the value calculated from the slump angle. Calibration
would need comparison with experimental results.

Reasonable density variations are found in many of the spoils. These result from
variation in the void fraction of the material. The void fraction is determined by the
size, geometry and surface properties of the particles.

Voids are rare in granular systems containing uniform circular particles. When
they settle, they have a very strong predisposition towards a hexagonal microstructure.
The only voids that are seen here are when one of the sites in the hexagonal structures is
vacant. The dynamic nature of deposition processes means that the collisional impulses
are almost always strong enough to perturb the system and fill the voids.

Voids smaller than one particle diameter never occur if the particles are free to
choose their final state. Such voids only occur when particles are placed in a confining
space whose dimensions are a non-integer multiple of the particle diameter. Even then
there will usually only be one small void per layer of particles in the final microstructure.

Voids larger than one particle diameter are rarely seen. Such large void structures
are only possible if there is a symmetric bridging structure over the void. These bridges
are supported by a network of normal stresses and are unstable. If one particle is out of
place it will experience a net force away from the support line of the bridge. It will then
either move towards or away from the void. The surrounding particles will move in the
opposite direction. In all cases the particles will rearrange themselves and the bridge
will collapse filling the void, at least partially. Large voids are therefore extremely
unlikely to exist. This is mostly because the' collisional forces in a flowing system
perturb the symmetry of the bridge causing it to collapse. This is a genuine physical
instability. Even in a static system, a symmetric bridge is likely to collapse. This is
a numerical phenomena. It may be due to either roundoff error eventually perturbing
the symmetry, but is more likely to occur because of the soft nature of the particles.
In large bridges, some particles would squeeze through between the other particles,
even though the hole is theoretically too small. This would only be a problem when
modelling bridges that are several particles across in a completely static system.



Voids in real systems are almost entirely geometry dependent. The most impor-
tant aspect is the variation in the sizes of the particles. Circular particles stack best when
uniform in size. The larger the size distribution, the more variable is the packing. The
final void fraction will be strongly dependent on the dynamics of the deposition pro-
cess. If the time scale for deposition is long compared to the percolation or segregation
time scale, the particles will pack quite well. Most of the voids between large particles
will be filled by smaller particles. If the deposition is very rapid then large voids may
be frozen into the microstructure, with the smaller particles having insufficient tiwe to
migrate into the void areas.

The shape of the particles will have an effect on the void fraction. Convex
particles will pack in very much the same way as circular particles with the same size
distribution. Concave and highly irregular particles will have a higher void fraction than
a similar distribution of circular particles. It is more difficult for such irregular particles
to move and rotate into an optimally packed microstructure, where compatible shapes
must fit together. In most cases it would be expected that the relevant time scale would
be too long for these extra voids to fill. Conversely, such irregular shaped particles
would have a much higher tendency to fracture into more regular and better packing
shapes. Modelling non-circular particles will be discussed later.

At present no attempt has been made to model density variations in the spoil.
The uniform circular particles give no information on this matter. Using circular size
distributions is the most important step in predicting the variation. It is expected that
cohesion between the particles will be the next most important phenomena. The particle
shape is considered to be the least important contributor.

This section describes several extensions to the model that are desirable if we are
to effectively model real granular flows, such as the filling of dragline buckets with real
materials. These include dynamic boundaries, static friction, cohesion and non-circular
particle geometry.

A full simulation of the filling or dumping of a dragline bucket requires the
capability to handle fully dynamic boundaries. A real bucket moves and changes angle
in response to the balance of forces shown in figure 4. It is necessary for the method
to be able to evaluate all these forces and moments and then to correctly move all
the boundary elements that compose our model bucket in response to them. This is
principally a book-keeping operation and is not theoretically difficult. The component
forces from each individual collision on the bucket are already calculated during the



simulation. They need to be summed correctly and additional rigid body equations of
motion, using only these forces and moments, must be solved.

The granular flow model described above has only a dynamic friction. The fric-
tional force only occurs for particles that are in relative motion. The absence of a static
friction allows piles of particles on flat surfaces to collapse. In order to obtain realistic
angles of repose, a static friction model is required. It needs to be based on sound
mechanical principles and needs to be computationally efficient.

Consider a stationary pile of uniform disks, as shown in figure 9a. The weight
of the disks is supported by a network of normal stresses between the centers of all the
touching particles. The forces on each of the particles above the bottom layer cancel
resulting in no net forces on them. Each of the particles in the bottom layer, however,
experiences a net force parallel to the surface. The dynamic friction depends on the
relative tangential velocity. If the particles are stationary then there is no frictional force
and the net force on these particles in outwards. The force balance on the right hand
end particle is shown in figure 9b. This particle therefore moves sideways in response
to this net force. The end particles no longer support those above and the pile collapses.

Fbound

Figure 9: (a) A pile of particles collapses, (b) the forces on one particle that is in contact
with the boundary in the absence of static friction.

In reality the particles in the bottom layer should not move unless the net force
parallel to the surface exceeds the static frictional limit. This is given by the product
of the coefficient of static friction and the normal force between the surfaces.

• When evaluating the forces for each collision, check whether one of the particles
belongs to a boundary and if the relative velocity is small, Iv; - vbl < E. If this
is the case, store the indices of the particle pair, the value of the normal force
between them Nib, and the unit vector between the line of centers. This pair is a
candidate for a frictional bond.



• Later, after the net force on each particle has been calculated by summing all the
appropriate forces, determine if the frictional bond is to be broken. Resolve the
net force F i on particle i into normal Nib and tangential Tib components, using
the stored unit vector. The actual net tangential force Tib is then compared to the
limiting static friction V Nib. If Tib < V Nib, then the tangential force is too weak
to break the frictional bond and the tangential force is subtracted from the net
force F i. Otherwise the tangential force is strong enough and the palticle moves
independently of the surface, according to the calculated net force. If the particle
moves along the surface then the normal dynamic friction acts automatically at
the next timestep.

• This is a two step calculation. The first occurs during the normal force evaluation.
No new variables are needed, merely storage of already calculated values. The
second step is effectively a filter on the net forces to remove any motion that
should be prevented by the frictional bonds. The overheads are proportional to
the number of static bonds to be tested. It does not involve substantial changes
to the present algorithm and is expected to be very efficient.

Static friction between particles is not expected to be important. All stable void
structures are related to geometrical properties of the particles. There are no circum-
stances under which a purely static frictional force will prevent particle microstructure
from changing. The dynamic friction and the particle shapes determine the stability of
these structures.

In the algorithm described in section 3, the particles were all circular. In general
this is expected to be quite adequate for modelling most flowing granular materials.
The size distribution seems to have a much greater effect on the flow behaviour. In
active, rapidly shearing flows, such as landslides, the particles will be ground down
and rapidly approximate a circular shape. On average the variation in collision angles
due to non-circularity will cancel out and the bulk flow should be similar. The precise
dynamics of individual collisions will of course be different. The particle geometry is
expected to have a larger effect when the particles are very highly elongated or when
fracturing of the particles needs to be considered. In more quiescent granular flows,
such as dragline bucket filling, or solids the geometry can playa more important role
in determining the flow pattern and the shear strength of the microstructure.

Nevertheless there are circumstances, such as with highly elongated particles,
where the shape of the particles needs to be considered. Hopkins (1991, 1992) has
modelled ice ridging processes using rectangular particles. This soft particle polygonal
approach has only been adapted to fracturing of bodies by Potapov et ai. (1992).



• Spheroids; these could be prolate, oblate or triaxial. Their aspect ratios can be
varied to mimic the essential features of real particles. These have the important
features of the normal force contributing to the spin and not lying along the line
of centers, while still being smooth.

• Polygons; these can be arbitrary polygons, arbitrary convex polygons, convex
polygons with a fixed number of faces, or regular polygons. These particles can
mimic a very wide variety of particle geometries, but have the disadvantage of
being very hard to use and of having sharp comers. Simulations using these
particles are described as between very slow and grotesquely slow (Campbell,
1993, private communication).

The effects of particle shape using spheroidal particles has been examined by
Rothenberg and Bathurst (1992). Polygonal particles have been more popular (Hopkins,
1991, 1992; Potapov et al., 1992). In the remainder of this section we explore some
of the aspects of the polygonal particle model that need to be improved and need to
be made substantially more computationally efficient. We restrict our considerations
to arbitrary convex polygonal particles, because of the complexity of the calculations
involved in the collisions for more general classes of particles.

1. Vertex data; the vertex data must be stored in the most efficient way possible, to
minimise the geometry calculations.

2. The area or mass, the center of mass Xc and moment of inertia I of all the particles
must be calculated and stored. This is best done by dividing the polygons up into
triangles and performing the appropriate integrations over the triangles. Xc =
J xdm/ J dm and then 1= J r dm, where r = ix-Xci.

3. Collision detection; it is necessary to detect when collisions of arbitrary polygo-
nal particles occur.

4. Collision location; the parts of the polygonal particles actually involved in the
collision must be ascertained.

The detection of collisions should be a two part process. An effective radius
should be found for each particle. The entire particle should be enclosed by a circle of
this radius centered on the center of mass. This effective radius would then be used in
the normal grid and search operations, described in section 3 for circular particles. This



then means that the potentially most time consuming step in the algorithm is equally
fast for all particle types.

The detailed geometry of the particles would only be consulted when the two
circles defined by the effective radii intersect, as shown in figure 10. This cannot be
avoided. The simplest approach, and the one traditionally used, is to compare all p
vertices on the first particle against all the q vertices on the second particle to detect
whether the particles actually overlap. The total computational time for this detection
is then proportional to pxq. For particles with small numbers of sides, such as triangles
and rectangles, this is not too bad. For complex particles it becomes prohibitive.

Strategies for reducing the computational cost of detecting and evaluating over-
laps or intersections of arbitrary convex polygons can be found in a range of computer
graphics and geometry texts. Preparata and Shamos (1985) in Computational Geome-
try describe an algorithm in which the polygons are divided by vertical lines passing
through each of the vertices into a sequence of trapeziums. Such an arrangement is
shown in figure lla. Using these trapezium to detect and evaluate the overlap reduces
the computation time to order p +q.

This algorithm is designed to find any overlap of the polygons and does not use
the extra information that is available in this situation. The particles do not appear
on top of each other with arbitrary initial overlap. They gradually move towards each
other, until a tiny overlap appears. This then increases and ultimately decreases before
vanishing as they separate. There is no point in checking for intersections between the
vertices on the far sides of the polygons. Our suggestion, shown in figure lib, is to use
the line through the intersection points of the circles constructed from the effective radii,
instead of vertical lines. This test line is then moved sideways, in both directions, to
form a sequence of trapeziums, that are progressively further away from the initial line,
until the entire intersecting region is isolated. This then involves the smallest number
of such trapezium constructions and will be the most efficient such method. This does
not eliminate the possibility of even faster methods based on other approaches.



Figure 11: (a) Dividing the particles into trapeziums, (b) the line through the points
of intersection of the equivalent circular particles is a good starting line to minimise
computations in collision determination.

The collision model is still the soft particle one shown in figure 7 for circular
particles. The magnitude of the repulsive force is proportional to the area of the overlap
rather than the linear overlap (Hopkins, 1992). The direction of the force is definitely
non-trivial. For a comer colliding with a face, the normal force is orthogonal to the
face. For the case of two faces colliding, the normal force is the orthogonal to both
faces. For the case of two comers colliding (remember soft particles overlap so this is a
real possibility), the direction of the normal force is undefined. It is not presently clear
what the best choice of direction is. All the methods considered are very sensitive to
the precise locations of the vertices and the amount of overlap along each face. Very
small changes in the orientations of the particles can produce substantial variations in
the direction of the resulting collisional forces.

Once the forces are evaluated they are used in the integration of the equations
of motion. Importantly the moments acting on the particles now consist of two parts;
one from the tangential friction and one from the oblique normal force that no longer
necessarily lies along the line of centers. Additionally the orientation of the particles
must be calculated so that 6 rather than 5 equations of motion must now be integrated
for each particle.

The inclusion of attractive particle forces such as cohesion is considered desir-
able. Between one third and one half of all the materials handled by draglines are
cohesive materials with substantial clay components. Not only does the cohesive force
affect the flow properties, it may also be an important contributing factor in producing
the density variation that is found in the spoil.

An efficient and physically reasonable cohesion model and algorithm is required
to simulate such sticky materials. The most straightforward possibility is to join col-
liding particles with a center-center spring. The particles would only separate if there
were sufficient repulsive or shearing force. A fundamental problem is the existence
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of stationary, but oppositely spinning pairs of connected particles. Such a situation is
shown in figure 12a. A true cohesive bond requires the particles to have no relative ve-
locity and no rotational motion. One possibility is to use two parallel springs, as shown
in figure 12b. This variation, using forces that are no longer center to center would in-
volve substantial computational overheads. No ideal model for the cohesive forces has
yet been developed. However, for groups of cohesive particles, the rotation problem
of the single spring model is eliminated by the dynamic frictional contact between the
many particles. It is for isolated binary pairs that this problem arises.

Numerical simulations using the algorithm described in section 3 were performed
for the two bucket designs shown in figure 13. Both initial sequences were set up
identically. Only the bucket design was changed. Figure 13 shows the two initial
configurations.

Since the boundary elements of the bucket are not presently able to move, we
change to a reference frame that moves with the bucket. This is also very convenient
for visualising the results, since the bucket always remains in the center of the picture.
The overburden then moves into view from the left, passes or enters the bucket, finally
passing out the right side.

The overburden is pre-blasted and broken up by the teeth (not modelled here), so
it is well modelled as independent lumps of material loosely stacked on the ground. For
overburden that is not loose, a cohesion model as described above would be required.
The overburden, in figure 13, consists of uniform 20 cm circular particles stacked in
a hexagonal microstructure. They are two layers deep under the bucket and 7 layers
deep on the left. The lower region is a crude representation of the ground after the
bucket has previously been dragged along it. The gravity vector is inclined at 22° to
the horizontal. Even though the material looks horizontal, the bucket is actually being
dragged up a slope inclined at 22°. Initially the particles used were uniform in size with



diameter 20 em. This is a somewhat arbitrary size chosen for computational and video
presentation purposes. Much smaller sizes can be used, if desired.

The overburden is a frictional material, with a coefficient of friction of Jl = 0.75.
The coefficient of restitution used was e = 0.1 and the spring stiffness was k = 5000.

Bucket 1, shown in figure 13a, is 5 m long and 2.3 m high, with a 0.5 m long lip
that is inclined at 40° to the bottom of the bucket. Bucket 2, shown in figure 13b, is 5.5
m long and 1.6 m high, with a 0.25 m long lip that is inclined at 25° to the bottom of
the bucket. When operating, the buckets do not bite deeply into the ground. They are
dragged along at shallow depth, of around 0.5 m, and fill gradually by scooping up the
small thickness of overburden above the level of the bucket. Due to the different sizes
of the buckets it is not possible to have precisely the same depth. The two buckets are
set up 0.4 m and 0.5 m below the surface respectively.

In the reference frame of the bucket, the material moves towards the bucket.
The lip bites into the overburden, which is split into two streams. One passes under the
bucket and one into the bucket. The filling of each of the buckets is shown at 4 time
intervals in figures 14 and 15. Some details of the flow are common to both buckets,
while others differ markedly. These are summarised below. As the bucket is dragged
along, the spoil level increases until it reaches to just above the level of the top of the
back of the bucket. The material then flows almost horizontally along the top of the



spoil. At this point the bucket is full and the bucket is lifted. The simulation is halted
here and the final profile is shown in figures 14<1and 15d.

The common and differing features of flow of a uniform size granular material
into the two buckets are now summarised.

• Both buckets have an initial rolling layer where material enters and, meeting
no resistance, spreads uniformly over the entire bottom and up the back of the
bucket.

• Material entering the bucket then surges onto the material previously deposited
and then stops. The surging occurs because of the frictional contact between
adjacent lines of particles. The force is initially too weak to produce relative
motion. As the amount of material behind increases so does the shear force.
Eventually, it overcomes the frictional force and shearing occurs along a fault
line between two masses of material. The lower mass remains stationary, while
the upper masses surges forward. It stops when its store of kinetic energy is
dissipated by collisional interactions.

• Both buckets have realistic fill time of around 10-12 s for a bucket speed of about
2-2.5 ms-1• This represents 4-6 bucket lengths for the fill.

• Both buckets continue to fill until the level of the spoil is slightly higher than the
top of the back of the bucket.

• The final profiles, shown in figure 16, can be compared with the spoil profiles
found experimentally using physical models and shown in figure 3. At the end of
the simulations the spoil is almost level throughout the bucket, while the physical
models show a slope down to the back from a peak about 1/3 of the distance
from the front of the bucket. This will be discussed further below when we use
non-uniform particles. However both video footage of the filling of real buckets
and photos from manufacturer's brochures show that in many cases the spoil is
actually quite flat on top. These differences are largely a function of the particle
properties. In particular, uniform circular particles have little resistance to shear
forces, so once the level rises above that of the back there is nothing to stop them
flowing all the way over.

• These findings appear to be consistent with the observations of physical bucket
filling models.



Figure 14: Sequence of snapshots showing the filling of bucket 1, at times T = 2s, 3s, 5s
and 8s. The initial state is shown in figure 13a.



Figure 15: Sequence of snapshots showing the filling of bucket 2, at times T = 2s, 3s, 5s
and 8s. The initial state is shown in figure 13b.



• The filling is a two stage surging process. As the incoming material encounters
the resistance near the lip of the bucket, an upward force is generated. After in-
creasing for some time, it causes a triangular shaped region of granular material
in front of the lip to surge upwards. This large raised mass pushes on all the ma-
terial in the region above the lip. Eventually it causes a second triangular shaped
region, adjacent to the first to surge up and into the bucket. This is a reasonably
regular pattern with a whole range of fluctuations superimposed. Generally, the
motion of a particle entering the bucket involves it first surging up and then later
up and across into the bucket.



Figure 17: Final configuration of particles with a 3/1 size ratio in (a) bucket 1, (10 s),
(b) bucket 2, (11 s).

• Material sometimes slowly slides along the bottom and up the back and is even-
tually swept off the back by material flowing over the top of the filled bucket.
The bucket cannot supply an adequate resistive force S, (shown in figure 4) to
immobilise the spoil in the bucket. This will lead to wear on the bucket lining.

• The initial material enters as a thin rolling layer and continues up the back and
falls out of the bucket. This at first appears undesirable. However the material
falling out the back acts to brake the material behind it in the bucket. This resis-
tive force rapidly slows the rolling layer to a halt. The total amount of material
that escapes is small.



• The filling is only a one stage surging process. Here the much shallower lip
acts only to separate the incoming material into two streams. One passes into the
bucket and one passes underneath. It does not provide a strong upward collisional
force Fe (shown in figure 4).

• The back and bottom parts of this bucket are essentially straight and join smoothly.
The resulting shape no longer has a constant radius of curvature. The uniform
size material is unable to slide along the bottom and up the back to finally be lost
over the back. For this material, this bucket provides enough resistance Sr in or-
der to hold the material firmly. Once particles have come to rest in the bucket they
do not move in response to the pressure exerted by the material pushed ahead of
the bucket. For material with a size distribution some movement is observable.

Here we make no effort to decide which bucket has the best performance. This
involves far too many factors for such a restricted study. What has been demonstrated
is that different bucket designs do produce different material flow patterns and have
different filling properties and that these can be identified and analysed numerically.

Simulations were also performed, for exactly the same bucket geometries, using
non-uniform size particles. The particle diameters were uniformly distributed between
10 cm and 30 cm. This represents a size ratio of 3/1. The average particle size of 20
cm is the same as size of the uniform particles used earlier. The final configurations for
both the buckets are shown in figure 17.

The main effects of the size variation are to increase the resistance of the granular
material to shear and to reduce the speed of flow over the bucket (since the disordered
microstructure causes more collisions and the flow is more dissipative). This affects
both the flow pattern and the final spoil. In the uniform particle cases the material enters
the bucket until the spoil level is above the level of the back of the bucket. All further
material entering the bucket flows horizontally over the top of the previously deposited
material and over the back. This prevents the material from piling above the level of
the back. In the non-uniform cases, slow creeping motions are evident throughout the
granular material in the bucket. The layers of particles above the level of the back feel
more resistance and fewer particles flow over the back. This results in a higher final
spoil level and, more importantly, the spoil loses its characteristic flat shape. It is now
heaped towards the center of both buckets. It is expected that the inclusion of even
larger particles will continue this trend. This emphasises the need to have and use an
adequate characterisation of the particles in the spoil, in order to reproduce observed
results.

As an indication of computational resources required for these simulations, the
first bucket simulation ran for 40,000 time steps with 978 particles in only 75 min
of CPU time on a Decstation 5000/200. Larger numbers of smaller particle, large



size distributions and many different configurations of the bucket can be performed in
reasonable times on very modest computers.

In the above simulations and discussion we have shown flow patterns that are
qualitatively similar to those observed. The filling times and surface profiles are in
good agreement with observations.

Detailed quantitative validation is well beyond the scope of the Study Group
The present purpose is to show that such modelling is possible rather than to present
the perfect model. However for the work: to proceed, rigorous qualitative validation is
necessary.

• No attempt was made to integrate the drag forces on the bucket. These calcula-
tions are possible and would provide one point of validation. Power consumption
could also be estimated.

• The University of Queensland has a two dimensional test rig. This could provide
experimental flow patterns with which to compare the detailed structure of the
computed flows in the bucket.

• The density of the material packed into the bucket varies throughout the bucket
once it is filled. These variations can be up to 30 % and affect the location of
the center of mass. This has a major effect on the way the bucket is rigged.
Predicting the density variations and matching experimental values is a crucial
validation test. Correctly reproducing these variations is arguably the most im-
portant feature to reproduce, given the enormous importance it has on bucket
performance.

Most importantly, we have demonstrated that particle methods can be used to at
least qualitatively model dragline bucket filling. The particles do enter the bucket and
their motion is broadly consistent with the available information. Further quantitative
validation of the model is desirable, but is well beyond the scope of the Study Group.

The model predicts the motion of circular two dimensional particles with various
size distributions. The boundary specifications are sufficiently flexible that any bucket
shape can be tested.



The model can identify variations in the pattern of bucket filling resulting from
changes in the bucket geometry. The bulk flows of material into each of the two buckets
modelled is demonstrably different. We have not attempted to decide which is a better
bucket design. This requires a far more thorough study. What has been demonstrated
is that such a study is feasible.

A realistic model of a dragline bucket filling requires the addition of static fric-
tion, cohesion and dynamic moving boundaries. Progress has been made on all these
areas. They are all either presently implemented or could be implemented in the future,
if the requirement arose. Fully dynamic boundaries would enable the bucket to move
and change orientation, in response to the complex balance of forces acting on it. This
would enable detailed prediction of the bucket behaviour. Both the filling and emptying
phases could be equally well modelled. Drag forces and power requirements could also
be predicted.

Size variations in the spoil affect both its volume and its shape. Non-uniform
particles have more resistance to shear forces. This causes a larger spoil volume and
a more heaped shape in comparison to the almost flat ones obtained with uniform size
particles.

In summary, such a model as described here could eventually, after further ex-
tension and validation, be used to:

• Evaluate different bucket designs and test their filling and emptying characteris-
tics. This would enable predictions of filling times and spoil volumes to be made.
Density variations and the center of mass could be determined. This would pro-
vide information that may be used to to help optimise the rigging used on the
bucket.

• Explore wear patterns on the buckets with a view to extending the life span of
the buckets and minimising the downtime of the draglines.

• Assist in making operational decisions - in helping to determine the best slope
of the cut, positioning of the dragline and digging strategies. An understanding
of the behaviour of the flow patterns of the rocks throughout the entire digging
process can be used enhance operational decision making.

• Study the breaking and lifting of the rock by the teeth and lip. This would require
rock fracturing to be included. A study of the lip and teeth interaction would
necessarily be three dimensional. Both are possible, but are much more difficult.
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