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Abstract

We discuss the work done at MISG 2004 on the mathematical modelling of a
long, electric radiant furnace used to anneal strips of steel. The strip is passed
continuously through the furnace. The annealing process involves heating the steel
to certain temperatures and then cooling it, resulting in a change in the crystalline
structure of the steel. The furnace settings are often changed to cater for products
with different metallurgical properties and varying dimensions. The mathematical
model is desired to optimise the running of the furnace, especially during periods
of change in furnace operation.

1. Introduction

New Zealand Steel (NZS) use a unique process to convert New Zealand
iron-sand into steel sheet products at its Glenbrook mill near Auckland.
Traditional galvanised steel (GalvsteelTM) and the new product Zin-
calume Λ are produced in a range of dimensions, grades and coating
weights.

The steel strip is annealed prior to being coated, by heating to a prede-
termined temperature for a definite time. Annealing produces desirable
changes in the crystalline structure of the steel, allowing NZS to tailor
its strength and ductility.

Strips of steel sheet are passed through a 150m long, 4.6 MW electric
radiant furnace at speeds of up to 130 metres per minute in order to
achieve the strip temperatures required for annealing, and subsequent
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coating. The temperature along the furnace is controlled by varying the
power supplied to the heating elements and by use of cooling tubes. The
cooling tubes are located in the last half of the furnace and consist of
steel tubes through which ambient air is pumped. It is important that
steel exit the furnace with the correct temperature for the coating that
is applied at the exit point.

The line speed through the furnace is reduced for strips of large thick-
ness and width in order to achieve the required temperatures. At the
beginning of the annealing–coating line there is an automatic welding
process which welds the beginning of a new coil of steel sheet to the end
of its predecessor, allowing the line to run continuously.

In each of the twenty zones of the furnace, there are thermocouples
in steel tubes, which are used to measure furnace temperature. The
thermocouple temperatures are compared with desired temperature set-
points, and the heating elements are controlled accordingly. Steel strip
temperature is also measured, using non-contact pyrometers at three
positions in the furnace.

If there is no variation in strip dimensions and annealing settings then
the line is able to run in a steady state, with the furnace temperatures re-



maining steady at the desired thermocouple settings. NZS have already
developed a mathematical model of furnace and strip temperatures for
this steady state operation. Challenges occur when there is variation in
strip dimensions or annealing settings because the furnace–strip system
has a large amount of thermal inertia. Consequently the line is in a
transient state for up to 50% of its operation, with varying effects on
quality control of the product.

Two improvements are planned for the line in the very near future;
a 3 MW induction heater and a gas jet cooler. The induction heater is
capable of heating the strip rapidly. The steel strip will pass directly
from the induction heater into the radiant furnace. The extra heating
power should allow the system to achieve greater line speeds for strips
of large thickness and width. Further, with its more rapid response, the
induction heater has the potential to reduce the time spent in transient
modes of operation. In the gas jet cooler, which will replace part of
the existing cooling zone, cooled furnace gas is blown directly onto the
steel strip. The new cooler section is expected to respond more rapidly
than the existing cooling tubes, giving more precise control of dipping
temperatures.

NZS set the following tasks for the Study Group:

Develop a mathematical model for transient furnace conditions.

Investigate the accuracy of the existing steady state model.

Predict transient strip temperatures for actual production sched-
ules with changes in product dimension, steel grade and furnace
temperature settings.

Couple the temperature model to a metallurgical model.

The paper is set out as follows:
We begin in Section 2 with an introduction to radiative heat transfer,

which is the primary mode of heat transfer within the furnace.
In Section 3 we model the temperature of the strip itself as it re-

ceives radiant heat energy from the furnace. We see that the strip’s
temperature can be accurately modelled as a function of time and just
one spatial coordinate, the distance from the entry point of the furnace.
Temperatures rapidly equilibrate across the thickness of the steel and
thermal diffusion along the strip is found to be negligible for the length
of time that any part of the strip was in the furnace.

Next, in Section 4, we model the radiation by studying the heat trans-
fer between surfaces within the furnace. Completing a task of this scale
was beyond the scope of MISG. However, the group at MISG was able



to develop a simple model for the furnace, capturing the main features
of the system and identifying the principles from which a more complex
model may be developed.

In Section 4.2 we investigate the time and length scales of the model
and find that while it takes hundreds of hours for the furnace to come to
equilibrium, the inner surface of the furnace responds much more rapidly
to changes in furnace settings.

Our dynamical model for the strip–furnace system leads to a steady
state model, and this is discussed in Section 4.3. The model differs
from NZS’s model in that MISG’s model allows for continuous changes
in temperature along the length of the furnace while NZS’s model is
discrete, involving one value of strip temperature and one value of the
furnace (wall) temperature for each of the furnace’s twenty zones.

We consider the temperatures that are measured by the thermocou-
ples in each section of the furnace in Section 5, and do a premlinary
analysis of the effect of cold steel on the thermocouples. Finally, in
Section 6, we discuss our conclusions and ideas for on–going work.

2. Radiative Heat Transfer

Radiative heat transfer is the primary mode of heat transfer within
the furnace, so here we give a brief summary of the theory that we need.
More details may be found in some of the excellent texts on the subject,
including Siegel and Howell ?, Sparrow and Cess ?, and Modest ?. We
follow Modest in this description.

Real opaque surfaces emit, absorb and reflect electromagnetic radi-
ation and these three properties depend on the temperatures of the
surfaces. The medium containing the surfaces may also participate in
thermal radiation heat transfer, but in the case of the NZS furnace the
medium, a mixture of nitrogen and hydrogen, is non-participating.

Surfaces emit a spectrum of thermal radiation when they are heated.
The distribution of wavelengths in the spectrum depends on what mate-
rial the surface is made from and its temperature. Likewise, the absorp-
tion and reflection of thermal radiation is temperature dependent and it
also has a dependence on a material’s response to different wavelengths.
Moreover, there may be a directional dependence; surfaces may emit,
absorb or reflect radiation more in one direction than another.

It is reassuring to know that most engineering problems involving ra-
diative heat transfer may be solved with sufficient accuracy under the
assumption that the surfaces have ideal properties. The most common
of these assumptions is that the surfaces are grey, diffuse emitters, ab-
sorbers and reflectors. This means that the net absorption, reflection



and emission properties of a surface have no directional dependence.
Such surfaces which do not reflect thermal radiation at all are said to
be black or black bodies. The total emissive power of a black body at
absolute temperature T is given by

Eb(T ) = σT 4, σ = 5.670 × 10−8Wm−2K−4, (1)

where σ is called the Stefan–Boltzmann constant.
Properties of a surface are given by three non–dimensional parame-

ters, defined in terms of the energy of the radiation. These are

Reflectance, ρ = reflected part of incoming radiation
total incoming radiation ,

absorptance, α = absorbed part of incoming radiation
total incoming radiation ,

Emittance, ε = energy emitted by a surface
energy emitted by a black surface at the same temperature .

Transmittance is another important parameter, but we do not need to
consider this because all of the surfaces within the furnace are opaque.
These parameters may vary in value between 0 and 1 and it can be
shown that α = ε = 1 − ρ for diffuse, grey surfaces.

Let x be any point on a surface within an enclosure. Let φx be the
heat flux supplied from inside the surface body to the surface at x, Ex

the power emitted by the surface at x per unit surface area and Hx the
irradiation at x, i.e. the radiant heat power per unit area arriving at x
from all other surface points within the enclosure. The power supplied
to the surface is due to the flux from inside the surface body and the
absorbed irradiation and this power must equal the power emitted from
the surface; i.e. Ex = φx +αHx. This equation must hold for all surface
points within the enclosure, so we simply write

E = φ + αH. (2)

In order to calculate H we need the notion of view factors, which
are sometimes called shape factors or configuration factors. The view
factor between two infinitesimal surface elements dAi and dAj , located
at points xi and xj respectively, is

dFdAi−dAj
=

diffuse energy leaving dAi directly toward and intercepted by dAj

total diffuse energy leavingdAi
.

Since energy leaves the surfaces diffusely, view factors depend only on
the geometry of the enclosure and it is not difficult to derive the formula



dFdAi−dAj
=

cos θi cos θj

πS2
dAj ,

where S is the distance between xi and xj , θi and θj are the angles
between the line from xi to xj and the outer normal vectors at xi and
xj respectively. An important observation from this equation is the law

of reciprocity

dAidFdAi−dAj
= dAjdFdAj−dAi

.

Surfaces within enclosures are often approximated by a finite number
of isothermal surfaces and one needs the view factor between two such
surfaces of areas Ai and Aj . This is given by

FAi−Aj
=

1

Ai

∫

Ai

∫

Aj

cos θi cos θj

πS2
dAjdAi, (3)

and there is a law of reciprocity

AiFAi−Aj
= AjFAj−Ai

.

Consider an enclosure consisting of N isothermal surfaces of areas
Ai, i = 1, 2, . . . N with emittances εi, reflectances ρi = 1 − εi, emissive
powers Ei, temperatures Ti, outward surface fluxes φi and irradiations
Hi. The contribution to Hi from Aj is due to the radiation emitted and
the irradiation reflected from Aj , so it is given by

FAj−Ai

Aj

Ai
(Ej + ρjHj) = FAi−Aj

(Ej + ρjHj),

by reciprocity of the view factors. Hence

Hi =
N
∑

j=1

FAi−Aj
(Ej + ρjHj).

But Ei = εiEb(Ti) and, by Equation (2), Hi = (Ei−φi)/αi = (Ei−φi)/εi.
Hence

Eb(Ti) −
1

εi
φi =

N
∑

j=1

FAi−Aj

(

Eb(Tj) −

(

1

εj
− 1

)

φj

)

. (4)



This important equation relates the heat fluxes from within the sur-
face bodies to the surface temperatures. For the case of view factors
between infinitesimal surfaces the relationship between the heat fluxes
and surface temperatures is an integral equation and Equation (4) may
be regarded as a discretisation of this integral equation.

3. Modelling the strip

If we assume that the sheet is perfectly straight with a rectangular
cross section then the portion of the strip within the furnace occupies a
region of space

S = {(x, y, z) : 0 ≤ x ≤ L,−w(x, t)/2 ≤ y ≤ w(x, t)/2, 0 ≤ z ≤ h(x, t)},

where

L is the length of the furnace,

x measures distance from the point of entry of the strip into the
furnace,

w(x, t) and h(x, t) are respectively the width and thickness of the
strip,

z is a distance coordinate in the vertical direction and y is a dis-
tance coordinate across the strip.

The strip thickness h and width w are piecewise constant functions of
x and t because the strip is formed by welding together straight sheets
that may have different dimensions.

The temperature u within the strip may be modelled by the heat
equation with an advection term corresponding to the strip’s speed v
through the furnace:

ρSCS

(

∂u

∂t
+ v

∂u

∂x

)

= kS

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

, t > 0, (x, y, z) ∈ S.

In this equation ρS , CS and kS are the strip’s density, specific heat
capacity and thermal conductivity respectively.

We can determine the relative importance of the different terms in
the equation by using dimensionless coordinates x̃ = x/L, ỹ = y/w,
z̃ = x/h, t̃ = tv/L, where h and w are typical values of the thickness
and width of the strip. In terms of the dimensionless variables, the
equation takes the form



∂u

∂t̃
+

∂u

∂x̃
=

kSL

vρSCS

(

1

L2

∂2u

∂x̃2
+

1

w2

∂2u

∂ỹ2
+

1

h2

∂2u

∂z̃2

)

.

Taking L = 150 m, v = 2 m s−1, w = 0.5 m, h = 0.5 mm, kS = 50
W m−1 K−1, CS = 500 J Kg−1 K−1 and ρS = 7854 Kg m−3 gives the
equation

∂u

∂t̃
+

∂u

∂x̃
= 4.2 × 10−8 ∂2u

∂x̃2
+ 3.8 × 10−3 ∂2u

∂ỹ2
+ 3.8 × 103 ∂2u

∂z̃2
,

which shows that the heat conduction terms in the x and y direc-
tions may be ignored. Further, the large coefficient of the heat conduc-
tion term in the z direction indicates that the strip responds rapidly to
changes in temperature in this direction.

Returning to the original variables, we find

ρSCS

(

∂u

∂t
+ v

∂u

∂x

)

= kS
∂2u

∂z2
. (5)

Let T (x, y, t) denote the temperature of the strip averaged over the z
direction. Thus

T (x, y, t) =
1

h

∫ h

0
u(x, y, z, t) dz.

The advantage of dealing with T rather than u is that T depends on
fewer variables than u and so it is easier to compute. Moreover, T should
be an excellent approximation for u because heat conduction in the z
direction is so rapid. Integrating each side of (5) with respect to z gives

ρSCS

(

∂T

∂t
+ v

∂T

∂x

)

=
kS

h

(

∂u

∂z

∣

∣

∣

∣

z=h
−

∂u

∂z

∣

∣

∣

∣

z=0

)

=
1

h
(flux in at top surface + flux in at bottom surface).

Assuming that the strip receives radiation evenly across it in the y
direction and that the total radiation it receives is q(x, t) per unit length
in the x direction, we obtain

ρSCS

(

∂T

∂t
+ v

∂T

∂x

)

=
q

wh
. (6)



We note that there are significant variations in CS , the specific heat
capacity of steel, over the range of temperatures to which the steel is
subjected. Tables 1 and 2, taken from Incropera and DeWitt ?, show
the temperature dependence of the thermal properties of steel.

Table 1. Properties of steel at 300 K.

ρ (Kg/m3) Cp (J/Kg.K) k (W/m.K)

7854 434 60.5

Table 2. Properties of steel at various temperatures.

T (K) 300 400 600 800 1000

k (W/m.K) 60.5 56.7 48.0 39.2 30.0

Cp (J/Kg.K) 434 487 559 685 1169

Polynomial interpolation of the Cp data for steel yields the interpola-
tion function

CS(T ) = 345−0.504333T+0.004895T 2−9.06667×10−6 T 3+5.5×10−9 T 4,
(7)

and we use this expression for CS in Equation (6). The Cp values of
steel and this interpolating function are graphed in Figure 2.

4. Simple furnace model

Our aim in this section is to develop a simple model of the furnace–
strip system that is detailed enough to exhibit the main dynamical prop-
erties of the system. NZS’s steady state model is essentially a two surface
model in that in each zone it is assumed that there is surface at temper-
ature Tzone interacting with the strip’s surface which is at temperature
T . Thus there is an assumption that little net radiation travels from
one zone into another. This assumption seems to work because of the
fact that, with one exception, temperatures change very gradually along
the length of the furnace. The exception is at the interface between
the cooling section and the heating section of the furnace. But at this
interface there is a wall of refractory bricks with a narrow opening in
it, through which the strip passes. This wall acts as a radiation shield,
reducing thermal radiation transfer from the heating section to cooling



section of the furnace. Hence, even at this interface, the assumption of
no net radiation transfer from one zone to another seems to be a reason-
able first approximation and we adopt this approximation for our simple
dynamical model. Thus, our assumptions are:

Assumptions

The inner surface temperature of the furnace walls depends on
time t and distance x along the furnace measured from the entry
point of the strip.

The temperature of a heating element is the same as the temper-
ature of the inner surface of the wall adjacent to the element.

Temperature changes within the furnace are so gradual that we
can ignore radiative or convective heat transfer along the length of
the furnace.

At this point, we ignore the cooling tubes. This model applies to
the heating zones of the furnace.

4.1. Model equations

Consider a length ∆x of the furnace. Within this length there are
only two surfaces that interact: walls and strip. Let 2p∆x denote the
total area of the inner surfaces of the walls in this length of furnace and
let w∆x denote the total surface area of one side of the strip in this



length of furnace. Thus, w represents the width of the strip and p is
approximately height + width of the inside of the furnace.

The assumptions of approximate isothermality of these surfaces sim-
plify the calculation of radiative heat transfer between the surfaces. The
relevant view factor for radiation from the strip to the walls is FSW = 1.
By reciprocity, FWS = w/p and, because the rows of the view factor
matrix sum to one, FSS = 0 and FWW = 1 − w/p.

We need to calculate q, the radiation per unit length of the furnace
from the walls to the strip. Instead of using i and j = 1, 2 in Equation
(4) we use subscripts W and S to denote quantities associated with the
walls and strip, respectively. Solving Equation (4) and using q = 2pφW ,
or equivalently q = −2wφS , leads to the required expression for q:

q =
2wεSσ(T 4

W − T 4)

1 + εS(1−εW )
εW

w
p

. (8)

Note that here we have replaced the black body terms in Equation
(4) by their values as given by Equation (1). The parameters εS ≈ 0.2
and εW ≈ 1 are the emissivities of steel and wall (refractory brick)
respectively.

Note that

q ≈ 2wεSσ(T 4
W − T 4)

because p > w, εW ≈ 1 and εS is small. Note also that an alternative
approach is to model the strip and walls as parallel planes. If this ap-

proach is adopted then one obtains the formula
2wσ(T 4

W
−T 4)

1

εS
+ 1

εW
−1

for q. This

formula is similar to one used by NZS in their steady state model and it
also differs only slightly from the approximation (8).

Next consider the energy balance for the wall surface and heating el-
ements in the length ∆x of furnace. Let CE denote the specific heat of
the element material and let m(x) denote the mass of heating elements
per length of furnace (m(x) will be a step function). Since the heat-
ing elements and the inner wall surface are treated as being a lumped
isothermal object,

mCE
∂TW

∂t
∆x = P∆x − Φ2p∆x − q∆x

where Φ is the heat flux into the walls and P is the power supplied to
the heating elements per unit length of the furnace. Assuming that the
heating elements have little thermal inertia, this simply gives



Φ =
P − q

2p
. (9)

We simplify the modelling of heat flow through the walls by treating
each wall as a separate slab. Thus we obtain a simple one dimensional
heat conduction problem

ρW CW
∂TB

∂t
= kW

∂2TB

∂r2
, 0 < r < d, (10)

TB(x, 0, t) = TW (x, t), (11)

kW
∂TB

∂r

∣

∣

∣

∣

r=0
= −Φ, (12)

kW
∂TB

∂r

∣

∣

∣

∣

r=d
= H(T∞ − TB(x, d, t)), (13)

where d is the thickness of the furnace wall, T∞ is the external ambient
temperature, H is a convection coefficient and TB(x, r, t) is the internal
wall (brick) temperature at a distance x along the furnace and a depth
r into the wall.

The thermal properties of refractory brick, of which the furnace walls
are made, are summarised in Table 3.

Table 3. Properties of refractory brick (provided by NZS).

T (K) 478 1145

kW (W/m.K) 0.25 0.30

Cp (J/Kg.K) ≈ 900 ≈ 900

ρ (Kg/m3) ≈ 2000 ≈ 2000

4.2. Characteristic time and length scales for
furnace wall heating

Dimensional analysis has already played a rôle in our work; in
Section 3 we used it to simplify the equation modelling the heating of
the strip. Here we use it to gain insight into the furnace’s response to
changes in heating.

For bulk changes in the furnace’s temperature, the dimensional pa-
rameters that are relevant are those that appear in the heat equation
(10) and the wall thickness, d. These combine to give a time constant



t1 =
ρW CW d2

kW
≈ 320hours,

using d = 0.4m (see Fig. 1) and values from Table 3. This gives a
measure of the time it would take for the furnace bricks to effectively
come to equilibrium if exposed to a constant source of heat.

However, heat sources within the furnace change much more rapidly
than this and one would expect that the furnace walls will respond quite
rapidly in the locality of their inner surfaces. To get a measure of such lo-

cal changes to furnace temperature, two approaches are presented here.
The first approach is the simpler, and is the method used during the
Study Group. In this approach, the geometry of the oven and the pres-
ence of steel strip is ignored. Diffusion in the oven wall is given by
equation (10), but the boundary conditions are simplified. Radiant heat-
ing of the wall by nearby electric heaters is modelled by the boundary
condition

kW
∂TB

∂r
= fσ(T 4

W − T 4
h ), r = 0

and the wall is taken to be infinitely thick. Taking the heaters to be
parallel to the walls and of the same width, in the same approach as
that leading to eqn. (8), gives f = εS ≈ 0.2.

We consider the effect of changing from a constant initial state TB =
T0 which is in equilibrium with the heaters (Th = T0), by changing the
temperature of the heaters to a new value T0 + ∆T0. We linearise the
response of the wall temperature about T0 by using TB = T0 + θ̃∆T0 and
nondimensionalise to obtain

θ̃t = θ̃rr r > 0 (14)

θ̃r = θ̃ − 1 r = 0 (15)

θ̃ = 0 t = 0 , (16)

with a lengthscale

L =
kW

4εSσT 3
0

≈ 5mm

and timescale

τ =
L2ρW CW

kW
≈ 2mins



That is, the characteristic time for the wall to respond to a change
in heater temperatures is about 2 minutes, and only the first 5 mm of
depth needs to respond. This is shorter than on-site experience suggests.

Numerical solutions of equations (14)–(16), conducted at the Study
Group and graphed in Fig. 3 confirm that, as expected, the rescaled
temperature changes are of order one when time changes are of order
one, at the surface of the oven wall.

A second, more sophisticated model (developed subsequently to the
Study Group in the course of writing this report) takes more careful
account of the actual oven geometry and the presence of the steel strip,
by using boundary condition (12). In this model, the power supplied
per unit length of heaters changes from P to P +∆P . Let θ(r, t) denote
the resulting deviation in brick temperature from its steady value T0, so
that we expand TB = T0 + θ. For simplicity, we only consider the first
few heating zones where the strip temperature T is relatively small. In
this region we ignore the fourth power of the strip temperature because
it is much less than the fourth power of the wall temperature.

Hence, linearising Equations (8)–(12) for small θ gives

ρW CW
∂θ

∂t
= kW

∂2θ

∂r2
, 0 < r < d,

(

kW
∂θ

∂r
− 4T 3

0

w

p
εSσθ

)∣

∣

∣

∣

r=0

= −
∆P

2p
,

with initial condition θ = 0 and boundary condition θ → 0 as r
becomes large (but is much smaller than d). These equations may be
cast into dimensionless form by setting



r =
pkW

4T 3
0 wεSσ

r̃ ≡ Rr̃;

t =
ρW CW

kW
R2t̃;

θ =
∆PRθ̃

2pkW
.

The resulting dimensionless equations are the same as for the simpler
model:

∂θ̃

∂t̃
=

∂2θ̃

∂r̃2
, r̃ > 0; (17)

∂θ̃

∂r̃
= θ̃ − 1, r̃ = 0. (18)

The scaling parameters are different to those for the simpler model.
With a strip width w = 0.938m, oven perimeter p = 3.4m, and a tem-
perature T0 = 1000K, the scaling factors give a length scale R = 20mm
and a time scale of 40 minutes.

The response of the furnace-strip system depends on its settings, but
a figure of 40 minutes is comparable to the actual period of time taken
by the furnace to respond to changes, especially in the front where the
steel strip is relatively cool. The simpler model result of 2 minutes is
too short to be realistic.

Since the simpler model calculation at MISG led to time and length
scales that were too short, attention was then shifted to the steel hearth
rolls (the rollers which carry the strip along the furnace), to see if they
could be the main source of thermal inertia within the furnace. Prelim-
inary calculations indicated that the hearth rolls do indeed respond to
temperature changes on the correct time scale, so that it would be useful
to include the hearth rolls in any transient thermal model of the oven.

4.3. Steady state solutions

The steady state equations are:

dT

dx
=

q

whρSCSv
, (19)

∂2TB

∂r2
= 0, (20)

TB(x, 0) = TW (x), (21)



kW
∂TB

∂r

∣

∣

∣

∣

r=d
= H(T∞ − TB(x, d)), (22)

which must be solved together with (7) and (8). The three equations
(20–22) give

TB = TW −
TW − T∞

d + kW /H
r. (23)

This equation allows us to estimate kW /H from temperature measure-
ments. NZS estimate d = 0.4m and the external furnace temperature,
TB(d) = 60◦C. Taking the internal wall temperature TB(0) = TW =
900◦C and T∞ = 20◦C gives kW

H ≈ d/21 = 0.019m.

Equation (23) also gives Φ = −kW
∂TB

∂r = kW

d+kW /H (TW −T∞). Inserting

this expression for Φ into (9) and using (8) gives an equation of the form
used by NZ Steel to model the steady state: P = k1(T

4
W −T 4)+k2(TW −

T∞),
where

k1 =
2wεSσ

1 + εS(1−εW )
εW

w
p

,

k2 =
2pkW

d + kW /H
.

An approximate solution to (19) is easily obtained by replacing T in
q on the right-hand-side of (19) by τi, the strip temperature at the start
of zone i. Thus the strip temperature in zone i is given by

T = τi +
2εSσ

hvρSCS(τi)

(

T 4
Wi − τ4

i

)

(x − xi), (24)

where xi is the location of the start of zone i, TWi is the wall temper-
ature of zone i, and the expression CS(τi) is given by (7). Solving the
differential equation in this manner is essentially implementing NZS’s
discrete model.

Figures 4 and 5 were generated by solving the differential equation
(19) using Matlab. There is a small discrepancy between these figures
and similar figures that NZS presented, based on their discrete model, at
MISG. NZS’s model predicts higher strip temperatures in the full anneal.
The difference is due to the fact that here we take into account the
increase in heat capacity of the steel with increasing temperature, which
results in a smaller temperature gain per unit heat energy absorbed by
the strip at higher temperatures.



5. Measuring Furnace Temperature

An important measurement used by NZ Steel as an approximation
to the transient furnace temperature is the temperature measured by
thermocouples, one in each section of the furnace. A furnace section is
∼5-6 m long, and each thermocouple is set into a steel tube projecting
into the furnace from the ceiling. These tubes are 0.3m long and have
an outer diameter of ∼0.15m.

Assuming the thermocouple touches the inside of the steel tube, it
measures the temperature of the steel tube wall. This temperature will
be approximately at equilibrium with its radiation environment, so that
the rate at which heat is radiated from the steel tube will approximately
match the rate at which heat is being absorbed from its surroundings.

A detailed model would account for the different temperatures of the
radiating electric heater elements, the hot inner brick walls, the cooler
steel, and reflections from the relatively shiny surface of the steel. As
a first approximation, we consider the cylinder (surface number 2) to
be projecting from a uniformly hot surface (the ceiling of the furnace,
surface number 1), and ignore other radiators in the furnace.



The net heat received from the hot wall by a surface element dA2 on
the cylinder is

q21 = dA2 F21σ(T 4
2 − T 4

1 )

where the view factor is

F21 =

∫

cos(θ1) cos(θ2)

πR2
dA1

where R is the variable distance from dA2 to the wall, θ1 and θ2 are the
angles between R and the normals to the surface elements as illustrated
in Figure 6, and the integral is taken over the surface of the hot ceiling.

If the temperature of the ceiling varies with R, it too would need to be
inside the integral. An examination of the integrand in the view factor
reveals which parts of the hot ceiling have most effect on the temperature
of the thermocouple:

cos(θ1) cos(θ2)

πR2
=

sin(2θ1)

2πR2

where the geometry gives θ1 + θ2 = π/2, and the area integral can be
written in the form



z

π

∫ Lmax

0
dL

∫ φmax

φmin

L2 dφ

(L2 + z2)2

where R2 = L2 + z2 and z is the vertical distance from the ceiling to
the area element dA2 (see Figures 6) Lmax is the maximum distance we
are integrating away from the cylinder. For Lmax < 0.77m, φmin = 0
and φmax = 2π. For larger L, the range of φ is restricted and depends on
L, but this effect on the view factor is small compared with the factor
∼ L−2 which reduces the effect of distant parts of the ceiling.

The integrand depends mostly on L, and a simple analysis (either
by graphing the integrand, as in Fig. 7 for z = 0.3, or by noting that
sin(2θ1) has its maximum at θ1 = π/4) reveals that it reaches a maxi-
mum near L ∼ z, and decays like L−2 as L increases. Hence the region
of ceiling most affecting the temperature of the thermocouple is that re-
gion in a disk of radius approximately 0.8m around the steel tube, with
the dominant effect being from an annulus about 0.3m away.



The effect of a cooler steel strip on thermocouple readings can be es-
timated roughly, by noting that the thermocouple tube extends down to
a distance 0.3m from the ceiling, which is 0.3m above the steel. Hence
the steel, if it is cooler than the furnace ceiling, will have a small effect
on the thermocouple, reducing its temperature. The effect is more pro-
nounced near the lower end of the tube, where it is closer to the cooler
steel — at the very tip of the thermocouple tube, the effect of the steel
strip is comparable to that of the hot ceiling, and the recorded thermo-
couple temperature will be roughly an average of the two (steel strip and
ceiling temperatures). Further up the thermocouple tube, this balance
will shift (varying roughly as z2), so that for example half-way up the
tube, where the distance to the strip is three times the distance to the
ceiling, the ceiling temperature will have nine times as much weight as
the steel strip temperature.

This suggests that two thermocouples in each steel tube, one set at the
very tip and one rather higher, might be a useful measurement tool, for
added confidence, allowing in principle an estimation of the steel strip
temperature, as well as of furnace temperature. More modelling work,
backed by numerical integration for the geometry of the actual furnace,
would be useful here.



6. Conclusions and recommendations

We have developed a simple model of the furnace–strip system which
captures the main features of the system. More importantly, we have
laid out the important mathematical and physical principles from which
a more detailed model may be constructed. Such a model may be de-
veloped by approximating the surfaces within the furnace as a large
number of isothermal surfaces which exchange thermal radiation with
each other. Obviously such an undertaking is not a trivial task because
it involves detailed calculations of view factors between portions of the
many different surface types within the furnace–strip system, and sepa-
rate calculations have to be done for different strip dimensions. There
are a number of benefits for developing such a model:

1 It would allow accurate calculation of strip temperature in steady
and in changing furnace conditions. This would allow calculation
of furnace settings for the annealing process and it would provide
a tool for optimising the running of the furnace, especially during
transient periods of operation.

2 It would provide knowledge of what the furnace thermocouples are
measuring. The thermocouples are used to estimate the furnace
temperature in each zone of the furnace. They play a vital role,
as they are used to control the power fed to the heating elements.
These thermocouples are housed in tubes which are exchanging
radiation with all of the surfaces within the furnace and so their
temperature readings depend on the temperatures of every surface
in the furnace. Thus, only a reasonably detailed model of the
furnace will tell us what these thermocouples are measuring.

3 It would allow accurate calculation of strip temperature across the

strip’s width. In particular, it would allow calculation of tempera-
ture along the edges of the strip. NZS has identified the edges of
the strip as being more susceptible to over–heating, which influ-
ences the annealing. Such overheating can cause a wavy pattern
along the product’s edges. Being able to monitor the temperature
of the strip’s edges will allow the company to reduce waste due to
edges overheating.

We should mention here that our simple model assumed that all sur-
faces are grey and diffuse. This is a good approximation for refractory
brick, but perhaps not such a good approximation for the steel strip. At
least for radiation in the visual spectrum, the angle of reflected radiation



appears to be randomly clustered around the angle of incidence of the
radiation, i.e. the surface is partly specular. It is not difficult to model
this feature of the steel. Indeed, a series of papers by Pérez-Grande et
al ?, Sauermann et al ?, Teodorczyk and Januszkiewicz ?, involve an
electric furnace model for crystal formation. The crystal, of course, is
highly specular.

This same series of papers seems to be the only modern literature
involving the modelling of a specific electric radiant furnace. While the
perfect cylindrical symmetry of the furnace under study simplifies the
problem of modelling the furnace, the main principles of the work apply
to the NZS furnace.

Finally, we have also conducted a preliminary investigation into the
meaning of temperatures recorded in thermocouples suspended in steel
tubes in each section of the furnace. These thermocouples are used in
practice to set desired furnace operating temperatures via a feedback
control system, and to measure how far from these desired setpoint tem-
peratures the furnace is operating at any moment in time. We note
that the temperatures recorded by these thermocouples may be sensi-
tive to the temperature of cold steel strip passing through that section
of the oven. Further modelling of the thermocouple tube temperatures
would be very useful, and promises better control of furnace and steel
temperatures.
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