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Summary

The Study Group looked at a variety of modelling frameworks for investigating market
behaviour in fast-moving consumer goods. Section 1 presents the background and
objectives to the work and the remaining sections of the report develop particular types
of model, as follows.

• Sections 2 and 3 consider consumer loyalty and psychology within lumped,
deterministic models. Key psychological features such as ‘minimising anticipated
regret’ are included in the models. It is seen how the introduction of a new product
can explain behaviour such as the ‘decoy effect’.

• Section 4 adds sociological aspects, for example the positive influence of
friends already buying particular products, and shows how they can lead to the
phenomenon of ‘lock-in’ if the social interactions are sufficiently strong.

• Section 5 adopts a probabilistic approach, based on Markov chains, to the study
of both psychology and sociology. The qualitative conclusions of the earlier
deterministic models are confirmed, namely that new products can give rise to
a decoy effect, and social interactions can lead to lock-in.

• Section 6 presents a different framework for studying social interactions, in
which consumers are explicitly given individual psychological characteristics and so
behave in intrinsically different ways. In this model, the probabilities of individuals
buying particular products change over time, under the influence of other members
of the population. Simulations, supported by analysis, again exhibit lock-in for
sufficiently strong interactions.

• Section 7 looks in detail at the decision process of individual consumers, as a
sequence of pairwise comparisons of different products. It is found that a two-
level decision tree can lead to a decoy effect. When loyalty is strong, the decoy
effect persists, even though the decoy product gains almost zero market share. In
contrast, the standard Logit model for consumer choice does not exhibit the decoy
effect. Preliminary network simulations using a two-level decision process exhibit
lock-in, which can be prevented by advertising.

• Section 8 also looks at network effects, but this time at the propagation of
consumer behaviour and the way in which new products gain market share.
Simulations show how the final market shares depend heavily on the position of
the new product relative to the existing ones in quality space.

• Section 9 gathers together some further ideas for modelling frameworks. In
a particle-dynamics model, consumers could be modelled as particles moving in
product space (corresponding to changes in their preferences), under the influence
of ‘potentials’ that are due to the available products. Again, a decoy effect seems
possible. Another possibility is to model a continuum of products, so that market
shares are replaced by a density in product space, which evolves over time.
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1 Background and introduction

1.1 General intentions

Consumer products such as shampoo or tomato sauce are designed so that they appeal
to consumers, encouraging them to buy those products. To that end, the industrial
R&D organisation tends to focus on understanding and manipulating product attributes.
However, buying behaviour is not only a function of the product: it is also, and in
some cases perhaps more so, a function of the consumer, his social environment of
other consumers, the competing products in the marketplace, and the brand marketing
strategy. In order to design the best product, it is necessary to understand not just
the physics and chemistry of the product, but also the psychology of consumers and the
sociology of consumer groups or networks.

The goal of this study is to have a model of the marketplace that describes certain
aspects of consumer buying behaviour. There are two main parts to such a model:

• A description of a population of ‘consumers’, who each choose (buy) repeatedly one
of a number of competing ‘brands’ (we can ignore the difference between product
and brand for these purposes). This subdivides into a description of the behaviour
of a single consumer (‘psychology’), and of the collective behaviour of a group, in
other words of the interactions between consumers (‘sociology’).

• A description of ‘brand management’, i.e. the strategy of brand managers when
changing the attributes of a brand such as price or quality in response to events in
the marketplace.

Traditional marketing models tend to focus on the second element, and treat the large
number of consumers in a macroscopic, averaged way. Alternatively, one can look at
individual consumers and their buying behaviour, and try to derive observable large scale
effects, like changes in market share. Ideally one would like to connect the ‘microscopic’
consumer viewpoint to the ‘macroscopic’ viewpoint of the brand manager.

1.2 Factors in the models

The main features which were included in the various models are:

A. Loyalty

Loyalty is the tendency for (some) consumers to stick to the same products. With this as
a key effect, deterministic, continuous-time models will be systems of ordinary differential
equations; the stronger the loyalty, the slower the changes in numbers of people buying
particular products. For discrete-time models, the degree of loyalty corresponds to the
size of diagonal elements in a transition matrix. On the other hand, with no loyalty (or
influence of other people) whatsoever, market share — or chance of someone making a
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particular purchase — has no dynamic behaviour and would instead depend only upon
what is currently on the supermarket shelves.

Another aspect of loyalty, not allowed for in our models so far, would be a memory
effect, to represent people returning to products they had previously used, after trying
something new they then didn’t like. This could be taken into account perhaps by using
recurrence relations or differential equations of higher than first order (or even employing
delay-differential equations).

B. Sociology

Sociology in this context is concerned with how one person’s buying is influenced by
that of others. With some sort of tendency of people to buy the same brands, there is a
possibility of ‘lock-in’, with one product dominating the market, even if its competitors
have more or less identical ‘qualities’ (including price). This effect and its opposite,
people wanting to be different, are easily modelled by ODE and discrete-time models.

C. Psychology

Psychology covers what, and how, aspects of the actual items on the shelves influence
people to make their choices, possibly buying something different from previously.
(Advertising might be subsumed into these characteristics but could also possibly be
considered as part of the sociological influences, especially if the advertising takes the
form of a well known figure endorsing a product.) More specifically, the following four
properties have been identified by Unilever as being important and their influences were
included in one or more models:

1. Minimise anticipated regret. This refers to how just two products compare with
each other as regards different qualities, which can include price (or ‘affordability’
= 1/price). A consumer might judge one item to be superior to another in all
respects. The first is then a safe choice for the consumer.

2. Attribute change. The introduction of a new product onto the market can change
the way consumers, or at least some of them, view established brands. This might
be by drawing attention to some quality which was not previously much regarded,
or it might make people give different weightings to the (established) qualities when
making their decisions. The former can be considered to be a special case of the
latter.

3. Outlier avoidance. When a number of products are in many aspects quite similar,
there can be a tendency for people to avoid ‘strange’ ones, i.e. others which are
substantially different from the majority in price or some other respect. Items near
the average can be favoured.

4. Decision process change. A straight choice between two items might be relatively
easy; they can be compared according to price, size etc. and a decision made.
With three or more, comparisons might be made between two things at a time,
one could be eliminated and then the winner contrasted with a third.
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1.3 Possible predicted effects

The models which were looked at during the course of the Study Group were intended
to shed light on:

1. How a ‘decoy’ product might influence the market. The appearance of
a third product might significantly change the market shares of two others, while
getting minimal sales itself. This effect is one of the most robust biases in consumer
choice, and has been observed in product classes from chocolate bars to TV sets
to beer. The decoy effect illustrates the importance of consumer psychology, of
understanding how consumers perceive products, and how consumers judge quality
prior to purchasing the product.

2. The dynamics of market share; how sales of products can vary over time.
For example, even if two products are equal in all relevant aspects, then after a
long time of consumer activity it might be that each product takes 50% market
share (preserving the symmetry), or one product takes nearly 100% market share
(breaking the symmetry), or that there is no steady state, with market dominance
alternating between the two brands. The second of these three cases is called
‘lock-in’, corresponding to one brand obtaining a virtual monopoly, which is almost
impossible to break.1

3. How a new product will fare, given its quality profile compared with existing
brands. This question is complementary to that of the decoy, asking what market
share a new product will gain rather than how it will affect the market shares of
existing products.

4. ‘Choice overload’: when there are just too many possible options for potential
consumers to pick from, and many will walk out of the shop without making a
purchase. This possibility was considered only briefly during the Study Group,
since the focus was on market share and it was assumed that the types of product
being modelled were ‘consumer staples’, so that every consumer would make some
purchase.2

1.4 The models

The main thrusts of the week’s activities were in building a handful of quite specific
models, into which the above psychological and sociological influences could be fed, and

1Unilever have previously carried out simulations on a probabilistic, discrete-valued, discrete-time,
agent-based model, with a finite number of products (two) and one type of consumer (i.e. all the agents
behaving the same way). This model is a version of the famous Ising model in statistical mechanics.
Lock-in here corresponds to a phase transition in statistical mechanics.

2There was a brief discussion of the possibility of taking the number of products to influence people’s
choices directly. It was eventually decided, however, that this did not really need to be included as
for every extra product on the market there would be another loss term for the sales of each existing
product.
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in seeing how these aspects B and C.1 – C.4 should be represented. Various types of
overall model were looked at. The sorts which might be considered could be mainly (but
probably not exclusively) categorised according to whether they were:

deterministic or probabilistic
(e.g. how a market share evolves (a small market should be

for high overall sales) treated as a random process)

continuous valued or discrete valued
(e.g. market share) (e.g. what one consumer buys)

continuous time or discrete time

lumped model or agent model
(populations buying different brands) (individuals doing the buying)

continuous product range or finite number of brands

identical consumers or consumers with different
intrinsic behaviour

(e.g. men or women)

Allowing for continuous or discrete agents, this already gives 96 types of model. Needless
to say, only a few were looked at. As well as the basic types of model mentioned above,
they can exclude or include sociological influences (making 192 types of model, or 288 if
‘drivers’, people of significantly more than average influence, are allowed for).

1.5 Preliminary modelling

The discussions in the Study Group started with the consideration of a simple
probabilistic model. Given two products, the probability of a typical consumer buying
the first at some point in time m is p1m and of buying the second is p2m = 1− p1m. The
corresponding probabilities at the next time (possibly the following day or month) are

(1) p1(m+1) = α∗
11p1m + α∗

12p2m and p2(m+1) = α∗
21p1m + α∗

22p2m .

Here (α∗
ij) forms a transition matrix (α∗

11 +α∗
21 = 1 = α∗

12 +α∗
22) and the process is being

represented as a Markov chain. The smallness of the off-diagonal elements α∗
12 and α∗

21

can be thought of as a measure of brand loyalty.

Going over to a continuous-time process (letting the time step shrink to zero with α∗
11 → 1

and α∗
22 → 1) the probabilities p1(t) and p2(t) = 1 − p1(t) of buying each product now

evolve according to a system of linear ODEs,

(2)
dp1

dt
= α11p1 + α12p2 and

dp2

dt
= α21p1 + α22p2 ,
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where now α21 = −α11 and α12 = −α22.

Taking N people, all behaving identically but independently (no sociology for the
moment), the expected market shares, X1 = p1 and X2 = p2, evolve in the same way, (2).
Assuming that the numbers are large enough and that populations can be regarded as
varying deterministically, the X’s can be thought of as populations (or, rather, fractions
of the population) and we have a lumped model for them:

(3)
dX1

dt
= α11X1 + α12X2 and

dX2

dt
= α21X1 + α22X2 .

These populations, or market shares, still satisfy X1 + X2 = 1. The off-diagonal
coefficients αij determine the rate at which people change to product i from product
j, i �= j.
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2 Psychology: influence of what is on the shelves

2.1 The effects to be included

All the aspects C.1–C.4 from Section 1.2 were looked at during the Study Group. The
last of these (decision process change) is considered in detail in Section 7; this section
concentrates on C.1–C.3.

1. Minimise anticipated regret. This modelling property was taken to lead to
simple comparisons along the lines of ‘with regard to quality k, is product i better than
product j?’ If the answer to all (relevant) questions, k = 1, . . . , nq, if nq is the number of
(pertinent) qualities, is no, then a consumer will not change from j to i. The more times
the answer is yes, the faster such a change is likely to happen. This can be represented
by taking the flow-rate constants to be of the form

αij = Nij = number of qualities for which product i is better than product j.

This can alternatively be written as

αij =
∑

k

H (Qki − Qkj) ,

with H the usual Heaviside function (H (s) = 1 for s > 0, H (s) = 0 for s ≤ 0) and Qki

the measure of quality k for product i. Such laws can be, and in the following section
are, generalised to make this effect more pronounced

2. Attribute change. This was eventually thought of in terms of a utility function
that is dependent upon what products are actually on sale. With such a (positive)
function U(Q), capturing all relevant product qualities in a single value, product i is
‘better’ than product j if U(Qi) > U(Qj). With this comparison, consumers are more
likely to move from j to i than vice versa: αij > αji. This might suggest having

(4) αij =
U(Qi)

U(Qj)
or αij = M1 + U(Qi) − U(Qj) ;

the positive constant M1 is included in the second version to ensure that rates do not
become negative.

If there are only two quality measures, Q1 and Q2, there is the useful concept of the ‘trade-
off line’. This might be fixed by having a known, linear utility function U = β1Q1 +β2Q2

for fixed (non-negative) βk’s. A trade-off line would then be a line of constant (positive)
U . On the other hand, with just two products dominating the market, these two should
have the same value of utility function, as they must, in some sense, be equal, and the
trade-off line should pass between the positions representing these products in ‘quality
space’; see Fig. 1. The precise utility function, the coefficients βk in this linear example,
might themselves depend upon what is on the market – in particular the brands’ positions
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2

1

0
Q1

Q2

Figure 1: The trade-off line passing through the quality points for
two existing products.

in quality space – as people’s perceptions as to what is a good buy can be influenced
by the attributes of the various products. The available products can define how people
weight their qualities.

With at least as many products, np, as types of quality, nq, the utility function could be
given by

(5) U(Q) =

nq∑
k=1

βkQk

with the non-negative coefficients βk chosen so that U(Q) = 1 gives a ‘best fit’ to the
products. For instance, one might take the βk’s to minimise

np∑
i=1

(U(Qi) − 1)2 ,

or else minimise a measure of distance such as

np∑
i=1

(
nq∑

k=1

β∗
kQki − β

)2

or

np∑
i=1

∣∣∣∣∣
nq∑

k=1

β∗
kQki − β

∣∣∣∣∣
for β = 1/

√∑
k β2

k and β∗
k = ββk.

This sort of idea presumes that comsumers will do such sort of calculations (in their
heads, or otherwise), or at least get a feel for what might be a reasonable utility function.
It also leads to all consumers being much the same, with no allowance for the possibility
of being price or quality-conscious. Such a characteristic might be catered for (to model
different types of consumer) by allowing U to be nonlinear, for instance

U =
∑

k

βkQ
γk

k .
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Another way of allowing for price consciousness might be to take

U(Q) = U∗(Q) + β+
1 Q1 = (β1 + β+

1 )Q1 +

nq∑
k=2

βkQk

with U∗ taken to be the earlier U in equation (5), chosen to give the best fit for the
existing products, and then adding a bias β+

1 Q1, with β+
1 ≥ 0, if Q1 is ‘affordability’.

3. Outlier avoidance. This effect means that consumers tend to change to products
near a ‘centre of mass’. In quality space the centre of mass would be at

Q =
1

np

np∑
i=1

Qi ,

the average of the qualities of the np products. The average might be weighted, perhaps
according to how much shelf space the products take up, although this might instead be
thought of as an aspect of ‘sociology’. With a measure of ‘distance’ between products,
for instance

dij = d(Qi,Qj) =

nq∑
k=1

|Qki − Qkj| ,

products close to the centre of mass, i.e. those i with low values of d(Qi,Q) are to be
preferred. 3

A possible choice for the rate constants could now be

(6) αij =
(M2 + d(Qj,Q))

(M2 + d(Qi,Q))

for some M2 ≥ 0. This constant can be included to stop αij being zero or infinity if
Qj = Q or Qi = Q, respectively.

2.2 Combining behaviour

The three effects discussed in Section 2.1 can be amalgamated to produce coefficients of
the form

(7) αij = Nij(M1 + U(Qi) − U(Qj))(M2 + d(Qj,Q))/(M2 + d(Qi,Q)) ,

or

(8) αij = M3 exp(Nij + U(Qi) − U(Qj) + d(Qj,Q) − d(Qi,Q)) ,

3The more standard Euclidean metric, d(Qi,Qj) =
∑nq

k=1(Qki −Qkj)2, could of course be used, but
the 1-norm version is taken here as more likely to be representative of the considerations of a casual
buyer. In any case, this sort of distance has to be subjective in that different consumers will give
different priorities to different aspects of quality.
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to give but two possibilities. Other combinations, for instance with some rational terms
as in (7) and some expontial terms as in (8), or sums rather than products, e.g.

a1Nij + a2(M1 + U(Qi) − U(Qj)) + a3(M2 + d(Qj,Q))/(M2 + d(Qi,Q)) ,

or more complicated functions, are clearly possible. Also, there is no need have symmetry
built into these factors, for instance the attribute change (utility function) could appear
through a factor or term exp(a1U(Qi) − a2U(Qj)) and the outlier avoidance through

(M2 + d(Qj,Q))/(M3 + d(Qi,Q)).

An explicit dependence upon the number of products on the market is easily included
by introducing a factor f(np). ‘Product overload’ can be built into the model by having
f(np) = o(1/np) for np → ∞ so that the total rates of change decrease as the number
of products goes up. An extra factor like 1/(M4 + d(Qi,Qj)) could also be included if
people were thought not to tend to change to vastly different products.

2.3 Implications of the rate constants

The four effects to be investigated, as listed in Section 1.3 can now be looked at.
Particular implications of the second and third facets of the psychology are discussed
here. The first, minimizing anticipated regret, is considered in more detail in Section 3.
The fourth, decision process change, is treated in Section 7.

Choice overload. Because rates of change go up with the number of terms, and
hence products, choice overload is not predicted by any of the suggested forms of the
coefficients αij, unless it is built in explicitly by including a factor f(np) with f decreasing
fast enough with the number of products, np.

Dynamics of market share. Market shares do not depend significantly, in their
qualitative behaviour, upon the coefficients αij. However, the values of the αij will
govern how fast the market shares tend towards their equilibrium values.

With constants such as in (7), αij ≥ 0 and αij + αji > 0 for i �= j; without the factors
Nij, or using (8), αij > 0 for i �= j. The linear system,

(9)
dXi

dt
=

∑
j

aijXj ,

where aij = αij for i �= j and aii = −∑
j �=i αji, turns out to have a negative semi-definite

coefficient matrix (aij), assuming only that αij ≥ 0 for i �= j. This follows since, for any
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x and, for simplicity taking αii = 0 (no movement from i to i),∑
i,j

xiaijxj =
∑
i,j

αijxixj −
∑
i,j

αjix
2
i

=
∑
i,j

(αijxixj − αjix
2
i )

= −1
2

∑
i,j

(αjix
2
i − (αji + αij)xixj + αijx

2
j)

≤ −1
4

∑
i,j

((αji − αij)x
2
i + (αij − αji)x

2
i ) = 0 .

Note that this inequality is strict if there are some i, j with xi �= xj, unless αij = αji = 0.
A change of co-ordinates to some Y = (Y0, Y1, . . . , Ynp−1) with Y0 =

∑
Xi then gives

Y0 = constant = 1, for the total market share to be one, and a unique steady state for
the revised, but equivalent, system

dYi

dt
=

np−1∑
j=0

bijYj (i = 1, . . . , np − 1) ,

since for our coefficients we do know that αij + αji > 0 for i �= j. It is then clear that
(9) has a unique steady state X∗ with

∑
X∗

i = 1 and that this is a global attractor: for
any initial data, X(t) → X∗ as t → ∞. That this is a ‘sensible’ solution, X∗

i ≥ 0 for

all i, is a consequence of dXi

dt
being non-negative should Xi = 0 with Xj ≥ 0 for other j:

if ever the market shares Xi are all non-negative they must remain so and in particular
X∗

i = lim
t→∞

Xi(t) ≥ 0.

(For other sets of coefficients, not given by (7) or (8) for example, it is possible that
αij = αji = 0 for some i and j with i �= j. It is then conceivable that the shopping
population can split into two (or more) camps, behaving quite independently so that
the market shares associated with these camps remain constant. The steady states then
form a one (or more) -parameter family and the long-term market shares will be fixed by
the initial data. Such behaviour means that there would have to be two products such
that, having bought one, someone would never buy the other.)

New products and decoys. The particular effects of ‘attribute change’ and ‘outlier
avoidance’ are not especially surprising. Factors from the latter, something like

(M2 + d(Qj,Q))/(M2 + d(Qi,Q))

for αij indicate first of all that a totally new product, significantly different from existing
brands so that its distance from the mean is large, will gain custom slowly and lose it
rapidly. The introduction of a new product close to an existing one will move the centre
of gravity towards the two, thereby pulling in consumers from elsewhere. This latter case
would not count as a decoy, as the new product would acquire a similar market share to

F-13



that of its neighbour. As an example, consider the case of initially just two products.
With only this factor from outlier avoidance, say with M2 = 0, αij = d(Qj,Q)/d(Qi,Q),
and the steady market shares are X1 = X2 = 1/2. The introduction of a third product,
with qualities identical to those of the first, leads to new equilibrium market shares
X1 = X3 = 4/9, X2 = 1/9. With such simple αij, a decoy could be applied to more
dramatic effect by positioning it so that Q = 1

3

∑
Qi = Q1. Then X1 becomes 1

immediately. Such behaviour can be ameliorated by reintroducing the constant M2.
4

The influence of attribute change, e.g. through U(Qi)/U(Qj) for U(Q) =
∑

βkQk with
the βk’s, along with a β, chosen to minimise

∑
i(
∑

k βkQki − β)2 subject to
∑

k β2
k = 1,

also leads to rather unsurprising behaviour. A new product coming onto the market
will change the βk’s, unless it satisfies U(Q) = β; it will do well if it is of good overall
quality (a high value of U means rapid gain and slow loss of custom) and badly if it is
of low overall quality (a low value of U means slow gain and rapid loss of custom). A
more interesting point is a possible rôle in a decoy effect. For just two qualities and two
products, U(Q) = β is a trade-off line running through the points corresponding to the
products. According to our simple coefficients αij = U(Qi)/U(Qj), the two products
have equal equilibrium market share. Introducing a third product a little ‘below’ the first
changes the βk’s and β so that U(Q) ≡ β1Q1 + β2Q2 = β now passes between the first
and third, but still through the second if the new product is positioned symmetrically
(see Fig. 2). With the specific example of Q1 = (5, 3), Q2 = (2, 4), Q3 = (3, 1), the

New trade-off line

Old trade-off line

3

Q2

Q1
0

1

2

Figure 2: A changed trade-off line resulting from a ‘decoy’ product, 3.

(new) utility function is just U(Q) = (Q1 + Q2)/
√

2. The long-term market shares
corresponding to this are 16/29, 9/29 and 4/29. A little has been gained by the first
product, and more lost by the second. These changes would be increased if αij were
(U(Qi)/U(Qj))

γ with γ > 1.

4Taking a power, αij = (d(Qj ,Q)/d(Qi,Q))γ , could also make things a bit better, for 0 < γ < 1, or
accentuate the effect further, for γ > 1.
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3 A linear ODE model

In this model the strength of flux between brands is determined by perceived brand
quality, based upon binary comparisons. The simplest response to such comparisons is an
attempt by consumers to minimize the expected regret resulting from any choice, which
is what is assumed here. It has previously been shown that the choice rule recognizes
the attribute-wise proximity of an alternative to other brands [1], and it is therefore
appropriate for preference change to be modelled on the pair-wise ranking of brands in
each quality, the simplest perhaps being to assign a positive score to a brand for each
successful comparison. Thus consumers attempt to minimize their anticipated regret
by opting – on any particular quality – for the safe bet. More sophisticated consumer
behaviour, capable of not only ranking brands but discriminating according to the size
of proximity gap requires more complex modelling, but may be justified since it appears
that subjective attribute valuations at least are nonlinear, reference-point-dependent
functions [1].

3.1 Consumer preference

Consider a consumer whose preference is shared out amongst all the available brands in
a market where there are no null brands, so that the total of all brands’ preference shares
is 1 (100%). The proportion of consumer preference held by brand X at time t is denoted
by X(t). For example, if the preference share of brand A is plotted against brand B in
a market where only two brands exists, the point must lie somewhere along the straight
line B(t) = 1 − A(t). Of interest is the case when a third brand is added, possibly as a
decoy. The additional brand means that the preference distribution changes from being
a straight line in the two-dimensional plane (A,B), to a plane in three-dimensional space
(A,B,C).

3.1.1 Switching between brands

Consider a linear flux αXY of preference moving to brand X from brand Y. It is assumed
that all fluxes are strictly positive, how ever small.5 Flux is the proportion of consumer
preference in one brand which is moving towards another brand, and is distinct from
the market share each brand attains (see Subsection 3.1.2). In a two-brand market the
resultant differential equations are:

(10)

dA
dt

= −αBAA + αABB ,

dB
dt

= +αBAA − αABB ,

together with

(11) A(t) + B(t) = 1 .

5It is inappropriate to consider negative αXY since this would be equivalent to a positive flux αY X ,
so all that is really being excluded is zero flux.
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Note that the system is over-determined: only one of equations (10) together with (11) is
required to determine the behaviour of the system. Upon introduction of a third brand
into the market, the system will be governed by

(12)

dA
dt

= − (αBA + αCA) A + αABB + αACC

dB
dt

= +αBAA − (αAB + αCB) B + αBCC

dC
dt

= +αCAA + αCBB − (αAC + αBC) C

together with

(13) A(t) + B(t) + C(t) = 1 ,

where again only two out of the three equations (12) are required with (13) to determine
the full solution. The model could be reformulated in terms of a single lumped own
brand (AC) and a competitor brand (B), but this would obscure any dynamics such as
the decoy effect and be inappropriate when attempting to model the preference fluxes
between individual brands, which would incorporate the different locations of each in
quality space (see Subsection 3.1.4).

3.1.2 Market share

It may be shown that, for non-zero initial conditions, all solutions of (10), (11), converge
to the equilibrium

(14)
(
Ā, B̄

)
=

(
αAB

αAB + αBA

,
αBA

αAB + αBA

)
.

Since (Ā, B̄) is a globally attractive, stable equilibrium, it can be considered as
representing the market share of each brand. This is independent of transient changes in
preferences and the result of consumer preferences being expressed through purchases.

The system (12), (13) also converges to a globally attractive, stable equilibrium giving
the market share of each brand as:

(15)

(
Â, B̂, Ĉ

)
=

(
(αACαCB + αABαBC + αACαAB) /Sα,

(αBAαAC + αBCαCA + αBAαBC) /Sα,

(αCBαBA + αCAαAB + αCAαCB) /Sα

)
,

where
Sα = αACαCB + αABαBC + αACαAB + αBAαAC+

αBCαCA + αBAαBC + αCBαBA + αCAαAB + αCAαCB .

Here the flux constants αXY represent the decision-making process (see Subsection 3.1.4)
with the steady state being the long-term outcome, namely the proportion of each brand
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actually purchased. Thus the model allows for significant preference flux between brands
(large αXY ) while market shares (X̂) may remain constant. In the context of decoy
behaviour, there may be a large flux towards brand C (given by αCA and αCB) without
necessarily resulting in a significant market share Ĉ.

3.1.3 Success of the new product as a decoy

The assumption that consumers’ preference shares of all the available brands always add
to 1 implies that no preference is withheld e.g. in expectation of a currently unavailable
brand. Thus the total market size is independent of the number of brands, and new
brands are not capable of introducing new consumers, i.e. Ā + B̄ = Â + B̂ + Ĉ =
Ã + B̃ + C̃ + D̃ = . . . = 1. To improve sales of the target brand A through the
introduction of a third brand C requires Â > Ā, which is satisfied, using (14) and (15),
if and only if

(16) αACαCBαBA > αCBαBAαAB + αABαBCαCA + αCAαABαCB + αCAα2
AB .

To increase overall market share of own brands (A + C) requires a reduction in the
market share of the competitor brand so that B̂ < B̄, which is satisfied if and only if:

(17) αABαBCαCA < αACαBAαCA + αBAαACαCB + αCAαABαBA + αCBα2
BA.

Before considering what form of flux constant might be appropriate, note that if αAC is
large compared to all other constants then

(18) Â ∼ αAB + αCB

αAB + αBA + αCB

>
αAB

αAB + αBA

= Ā,
(
⇒ B̂ < B̄

)
.

Thus if there is sufficiently strong change in preference from C to A, then the desired
increase in market share A will always occur. How significant this increase is will depend,
as can be seen from (18), entirely upon the size of αCB. This intuitively makes sense,
since a reasonable preference change from B to C is required for the flux from C to A to
produce a significant increase in A.

3.1.4 Brand preference flux

Here preference flux based upon differing brands’ relative perceived quality is modelled
with two quality measures P and Q. The classic scenario when two brands (A and B)
trade off successfully – each outranking the other in exactly one quality dimension – is
shown in Fig. 3. A trade-off line exists through such brands, so that, after rescaling, the
sum of perceived quality values for all brands on the line is equal. New brands below the
line should not compete very successfully, while those that come into the market place
above the line are expected to fare well. If we denote PX and QX as the two quality
values of brand X, then PX + QX is the same for all brands on the trade-off line.

The location of any two existing brands generates up to nine zones into which any new
potential brand could be placed. Fewer than nine zones will only exist in the degenerate
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P

Q trade−off line 

A 

B

C 

1a 2 

1b

5c 4b 3 

4a 

5a 

5b 

Figure 3: Two brands (A and B) located on a trade-off line relative
to two quality dimensions P and Q will generate nine zones (here
labelled 1a to 5c) into which any new produce (C) could be added.
Here C has been placed in zone 1a, the target-decoy position for A
(see Table 1).

case where the two brands are exactly equal in one or more quality dimension, which
is not of interest here. If brand A is the target brand with a trade-off competitor B,
and brand C is a new (potential decoy) brand, then the nine zones labelled in Fig. 3 are
conventionally defined as in Table 1.

5c : trade-off 4b : reverse-competitor-decoy 3 : utopia
1b : competitor-decoy 5b : trade-off 4a : reverse-target-decoy
2 : worthless 1a : target-decoy 5a : trade-off

Table 1: Conventional definitions of the zones in quality space given in Fig. 3.

The simplest outcome of a binary comparisons by a consumer in such a process is to rank
two brands as ‘better’ or ‘worse’ in each quality. This may be considered as a minimized
regret approach, whereby consumers rank the potential for reducing disappointment in
any choice over finding the best brand. The simplest reasonable flux constant is therefore
given by

(19) αXY = H (PX − PY ) + H (QX − QY ),

where H is again the Heaviside function. Thus any brand will independently gain a score
when it compares favourably on any individual quality dimension. To allow for consumers
with a preference with regard to qualities, perhaps considering one more important
than the other, it is appropriate to weight the scores gained from each comparison.
Alternatively these weights represent a confidence weighting, given by consumers who
value all qualities equally, to their ability to correctly judge the ranking in each quality. In
addition, consumers might give extra weighting to any brand which completely dominates
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another. Such behaviour will result in fluxes of the form:

(20) αXY = βH (PX − PY ) + γH (QX − QY ) + δH (PX − PY )H (QX − QY ) ,

where β, γ and δ are non-negative.

3.2 Results

In order to see what are the minimal requirements to produce behaviour such as the
decoy effect it is appropriate to first consider the least complex case. For consumers who
only rank qualities without considering the size of any discrepancy or dominance, the
flux between brands is given by (19).

Consider a new brand placed in the target-decoy zone 1a (see Fig. 3). Then the flux
from this new brand C to A is determined by αAC = 2, because it is dominated, but the
flux to B has only αBC = 1, since B outranks C in Q but not P (consequently the flux
from B to C has αCB = 1 also). The dynamics of the system are given by substituting
each of these values for (19) into (12):

d

dt


 A

B
C


 = β


 −1 1 2

1 −2 1
0 1 −3





 A

B
C


 ,

resulting in a steady-state solution, given by substituting (19) into (15), of

(21)
(
Â, B̂, Ĉ

)
=

(
5

9
,
1

3
,
1

9

)
.

The original market share of brands A and B was Ā = B̄ = 1/2, so that market share
of A has increased by 1/18 to Â = 5/9. Brand B’s market share is reduced by 1/6 to
B̂ = 1/3, lost partly to A and partly to C. The results for all other zones are given
in Fig. 4, and show the expected behaviour. Only the target-decoy position (zone 1a)
will increase the target brand’s market share; it follows that placing a new brand in
the competitor-decoy zone (1b) will actually harm overall market position. A worthless
brand (zone 2) which is dominated by all others will not gain any market share.

All other locations result in an overall increase in market share between the two own
brands A and C, although the only significant gain that can be achieved is if the new
brand dominates the competitor (zones 3 and 4b). In all other cases the market share
gained is simply equivalent to introducing a third trade-off brand (with B̂ remaining at
1/3 in all cases), and so there is no benefit from producing a brand which outranks only
the target brand in any qualities. This may easily be seen by clustering brands A and C
– see above. These crude rules will obviously be tempered by any weightings attached
to qualities or the magnitude of differences, giving more subtle and realistic behaviour.
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P

Q

1/2

4/9

2/3

2/3

2/3

8/9

2/3

2/3

1

0

−1/18

+1/6

+1/6

+1/6

+7/18

+1/6

+1/6

+1/2

0

−1/6

−1/6

+1/18

−1/6

−1/6

−1/6

−7/18

−1/2

B 

A 

Figure 4: The results of placing brand C into each of the nine
possible zones created by A and B. Total market share of own
brands (target A plus new brand C), Â + Ĉ, is given in bold; the
net gain in market share, Â+ Ĉ− Ā, is given in italics; the net gain
for the target brand, Â − Ā, is given in normal font.

3.2.1 Quality preferences and dominance weighting

Any difference in quality significance, β �= γ in (20), may skew the outcome of the
consumer preference dynamics. As one quality starts to dominate, the problem tends
to a comparison in a single quality dimension. In the limiting case the brand with the
highest perceived value in that quality will gain the entire market, since it is considered to
completely dominate all other brands. If a consumer’s preference change is strengthened
by noting that a brand is completely dominated, additional weighting is given by δ �= 0
in (20). In the absence of quality preference (β = γ = δ) this results in quantitative but
no qualitative differences. For example, the target-decoy position (C placed in zone 1a)
results in a market share distribution of(

Â, B̂, Ĉ
)

=

(
7

12
,
1

3
,

1

12

)
,

as compared to that given in (21). As expected, such weighting increases the decoy
effect.

3.2.2 Multiple brands and additional quality dimensions

The analysis can easily be extended to multiple brands. Note that for only two brands
which trade off (always the case where one does not dominate the other) we may draw
a straight line through both and define this as the trade-off line. For multiple brands
which trade-off, the line may not be straight but will still be monotonic: thus none of
the results are affected.
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Although consumers may only carry out binary comparisons, these may be executed over
more than two quality dimensions. The model extends naturally to higher dimensions in
quality-space: the trade-off line in two dimensions becomes a plane in three dimensions,
given by P + Q + R = 1, upon which equal brands would be expected to lie. For more
than two brands to all trade off successfully, however, all brands must trade off pairwise.

3.3 Conclusions

The asymmetric decoy effect may be replicated with minimal prior assumptions, based
only upon the aim of minimized regret. Binary comparisons of products on separate
quality dimensions are sufficient to drive consumer preference towards a target brand,
producing a shift in market share.

If the rate of change from an inferior decoy to a target is sufficiently strong then the
desired increase in market share of the target (and consequently the loss in market share
of the competitor) will always occur. Furthermore, with such simple strategies only
the target-decoy position will increase the target brand’s market share, with analogous
results for the competitor-decoy zone.

For simple fluxes the best strategy is for the target-dominated decoy to outrank the
competitor in all the qualities in which the target outranks the competitor. If consumers
place additional significance on a brand dominating another beyond the fact that it
outranks the other on each quality dimension separately, as might be expected in a
minimzed regret approach attempting to find a ‘safe bet’, then the size of the decoy effect
is increased. Results may be extended to a market place with multiple brands where
consumers evaluate these on multiple quality dimensions. At present there appears to
be an absence of experimental research considering the decoy effect either for more than
three brands or where choices must be made across more than two quality dimensions,
[2].

While the model presented here is clearly not sufficient to explain all the many subtleties
of consumer choice behaviour, it shows how complex outcomes may result from quite
simple driving forces. This suggests that some current models may call for the application
of ‘Ockham’s razor’, since it is hard to judge the value of apparent improvements in
psychological or sociological modelling unless their inclusion brings about a genuine
difference in behaviour or outcome.
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4 Sociology: influence of what is being bought

The simplest model considered at the Study Group to account for ‘sociology’, i.e. how one
consumer influences another, was an extension of the previous deterministic population
model, with just two equally good products on the market. Taking X(t) to be the market
share of one of these, the model in the absence of sociological influences would be of the
type

(22)
dX

dt
= (1 − X) − X = 1 − 2X ,

where time has been scaled to make α = 1.

The sociology appears by having another mechanism for brand switching, in addition
to the consideration of quality. Here we suppose that people are more likely to buy, or
change to, a product if others are doing so. The probability of a single person changing in
some small time interval from the second product to the first should be some increasing
function of the number of people presently buying the first, i.e. an increasing function of
the first’s market share. Taking this function just to be a power, with exponent γ > 0,
and multiplying by the number susceptible to such a change, this gives a rate of increase
of the market share X (additional to the (1 − 2X) in (22)) of KXγ(1 − X) for some
constant K. (This constant would be negative if people aimed to be different. In this
case the new term should probably be KXγ+1 as it is now a loss term from a population
of size X.) There will be a corresponding loss term from the first to the second product,
(1 − X)γX (still maintaining no intrinsic bias). The ODE model is now

(23)
dX

dt
= 1 − 2X + K(Xγ(1 − X) − (1 − X)γX) .

The size of the constant K can be thought of as a measure of the importance of sociology.
(The new term for people trying to be different, K(Xγ−1 − (1 − X)γ−1) with K < 0,
is expected to lead to similar qualitative behaviour and is not discussed further here.)
Having the rate of movement from the second to the first product given by an attractive
function of X less a corresponding function of (1 − X), if it is thought that people are
less likely to change from a popular product, would lead to (Xγ − (1 − X)γ)(1 − X) in
place of Xγ(1 − X). This supposed positive term becomes negative for X < 1/2 so this
idea has not been pursued.)

If γ = 1, the social influences are linear, but this leads back to (22) as the new terms
cancel out. One might also want to avoid this sort of dependency because it would make
(23) quadratic, which would conflict with the symmetry that should be inherent in a
supposedly unbiased model. Taking instead γ = 2, the right-hand side of (23) becomes
cubic:

(24)

dX

dt
= 1 − 2X + K(X2(1 − X) − (1 − X)2X)

= 1 − 2X + KX(1 − X)(2X − 1) = (1 − 2X)(1 − KX + KX2) .

F-22



For K ≤ 4 (‘weak’ sociology), 1−KX+KX2 ≥ 0 and the only steady state is the obvious
symmetric one of XS = 1/2; this is stable and a global attractor. For K > 4 (‘strong’
sociology), 1 − KX + KX2 = 0 has roots X± = (K ± √

K2 − 4K)/2K. ‘Pitchfork’
bifurcation occurs at K = 4. In this case XS is unstable while X± are stable: ‘lock-in’
occurs with one product winning the majority of custom despite being no better than
the other. Clearly, for K only marginally bigger than 4 these two new equilibria are near
the original one but for large K they correspond to market dominance by one product
or the other: X− → 0 and X+ → 1 as K → ∞.

It is also easy to see that even with one product being transparently better than the
other, so that (24) might be replaced by

dX

dt
= 1 − αX + KX(1 − X)(2X − 1)

for some α between 1 and 2 if the first product ‘should’ gain the larger market share,
lock-in again occurs. With sufficiently large K there are again three steady states, the
smallest and largest of which are stable, and these two will lie close to 0 and 1 if K is
very large. In these circumstances, it is possible for the inferior product to hold on to
nearly all the market.
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Figure 5: A Markov Chain for (left) two products and (right) three products. The
transition probabilities between products at each time step are marked with arrows; the
(unmarked) probabilities of remaining with the current product can be deduced.

5 A Markov model with social influences

In this section we present a model based on Markov chains, rather than the continuous-
time differential equations considered so far. We first develop results for the possibility
of a decoy effect, similar to those found in Section 3. We then introduce sociology and
obtain results for lock-in analogous to those found in Section 4. These Markov models
display both important similarities to and differences from the previous models, and may
be simpler to work with and visualise in certain circumstances.

5.1 The decoy effect in a Markov model

We start by considering a simple probabilistic model without sociology, with the intention
of examining the possibility of a decoy product. Consider first two products A and B
as in Fig. 5 (left): the transition probabilities shown between products produce, in the
notation of (1) in Section 1.5, a transition matrix (α∗

ij) given by

P =

(
1 − λ − a λ

λ + a 1 − λ

)
.

Here λ represents a natural ‘churn rate’, that is, the effect of a consumer changing
product simply because he or she is unable to make a rational choice between the two.
The constant a represents a bias which the consumer may feel to leave product A for
B, perhaps because B is of higher overall quality (that is, offers a higher value for the
consumer’s utility function). The equilibrium distribution π (that is, the vector of
equilibrium probabilities such that Pπ = π) is found to be

π =

(
λ

2λ + a
,

λ + a

2λ + a

)T

.
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Introducing now a third product C as in Fig. 5 (right), with the same churn rate6 but
with additional biases b and c as shown, we obtain a transition matrix

P3 =


1 − 2λ − a λ λ + c

λ + a 1 − 2λ λ + b
λ λ 1 − 2λ − b − c




with equilibrium distribution

π =

(
λ(3λ + b + 2c)

(3λ + a)(3λ + b + c)
,
3λ2 + λ(2a + 2b + c) + a(b + c)

(3λ + a)(3λ + a + c)
,

λ

3λ + b + c

)T

.

In order for a decoy effect to be exhibited, we wish for the market share of product A to
be increased in the presence of the decoy product C, that is,

λ(3λ + b + 2c)

(3λ + a)(3λ + b + c)
>

λ

2λ + a

or

(25) αγ − β + γ > 3

where
α = a/λ, β = b/λ, γ = c/λ.

We also require

(26) γ > β > α ≥ 0

in order that the initial market share of A is lower than B; that the bias from the decoy
to B is stronger than the bias from A to B; and that the bias from the decoy to A is
stronger still.

Equations (25) and (26) together therefore define the region of interest in (α, β, γ)-space.
The fractional increase in the market share of product A through the introduction of the
decoy product is

(2 + α)(3 + β + 2γ)

(3 + α)(3 + β + γ)
.

6It is debatable whether the same churn rate λ should be used in the three-product model as in the
two-product model. Clearly, introducing a third product will increase the level of churn, as consumers
have more choices available. However, if the same value of λ is used for both models then that implies
that the probability of leaving A for another product is roughly doubled simply by the introduction
of an extra, inferior product. A new value for λ lying between the old value and half of that might
be most appropriate, and that would change the results obtained later in this section. The correct
relationship between the values of λ in models can only be determined by measuring how consumers
react to additional choice in practice.
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Note that in order for all the probabilities in the 3-product transition matrix P3 to
remain in the range [0, 1], we must require that both 1 − 2λ − a and 1 − 2λ − b − c are
non-negative. For given values of α, β and γ satisfying (26), this is equivalent to

λ ≤ 1

2 + β + γ
,

which sets a maximum value on the churn rate. The decoy effect is best observed when
γ is made large (a high bias from C to A and/or a low churn rate) whilst at the same
time limiting the size of β.

5.1.1 Special case: equal initial market shares

If the two products A and B are initially equally placed in the market, then we take
a = 0 so that each has a 50% market share before the introduction of the decoy product.
Then (25) and (26) reduce to the requirement that

γ > 3 + β.

This is likely to be rather difficult to achieve in practice, as it requires making the bias
towards A significantly larger than the bias towards B, unless the churn rate λ is small
(in which case b and c could both be small as well but differ by more than 3λ). The
fractional increase in the market share of A in this case would be

2(3 + β + 2γ)

3(3 + β + γ)
≤ 4

3
.

If β and γ are large but of similar size then the increase in market share is negligible;
hence simply taking λ small is not on its own sufficient for an appreciable decoy effect,
and more care must be taken in engineering appropriate values.

5.2 Sociology in a two-product Markov model

We now return to just two products, as in Fig. 5 (left), but introduce a sociological
effect whereby consumers have some tendency to prefer a product which other people
are already buying. Suppose that we have a total of N consumers, n of whom at a
particular time-step are buying product A and the remaining N − n buying product B.
The sociological effect is modelled by changing the transition probability for B → A
from λ to

(27) λ + µ1n/N,

and the transition probability for A → B from λ + a to

(28) λ + a + µ2(N − n)/N,
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where µ1 and µ2 are constants representing the strength of the sociology (analogous to
K in Section 4). In a more advanced model, µ1 and µ2 might vary from consumer to
consumer.

Each of the N consumers follows his or her own Markov chain, and the value of n changes
whenever a consumer switches product. There is therefore a related Markov chain for
the value of n, with states {0, 1, . . . , N}, and we consider the equilibrium distribution π
for this new Markov chain (π ∈ R

N+1).

We now use a standard argument from the theory of stochastic processes, in which the
transition probabilities above are to be considered as rates of transition per unit time,
and consider a time interval δt. The probability that n increases by one during this
time interval is (N − n)(λ + µ1n/N)δt, because there are N − n consumers currently
buying product B, each of whom might switch to A during the interval with probability
(λ+µ1n/N)δt. We take δt sufficiently small that the likelihood of two or more consumers
switching simultaneously during the time interval is negligible. Similarly, the probability
that n decreases by one is n

(
λ + a + µ2(N − n)/N

)
δt.

At equilibrium, there must be a balance between the numbers flowing from state n to
n + 1 and vice versa. Therefore,

(29) πn(N − n)
(
λ +

µ1n

N

)
= πn+1(n + 1)

(
λ + a +

µ2(N − n − 1)

N

)
.

This recurrence relation allows each of the πn to be determined in terms of π0, which
is then found (if required) from the normalisation condition

∑
n πn = 1. The expected

market share of product A is given by
∑

n nπn.

5.2.1 Analytic results

While (29) provides an analytic result, it is difficult to get a clear idea of the distribution.
Further progress can be made by considering a continuum model for large N .

Let x = n/N and consider the function φ(x) = N−1 ln(πNx). Initially, φ is only defined
on the set {0, 1

N
, 2

N
, . . . , 1} (i.e. when Nx is an integer), but we can extend this to a

continuum approximation to φ defined for x ∈ [0, 1]. From (29),

eNφ(x)(N − n)(λ + µ1n/N) = eNφ(x+1/N)(n + 1)(λ + a + µ2(N − n − 1)/N).

Replacing φ(x + 1/N) with the Taylor approximation φ(x) + N−1φ′(x) we obtain

eφ′(x) =
(1 − x)(λ + µ1x)

(x + 1/N)(λ + a + µ2(1 − x − 1/N))
,
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Figure 6: Graphs of the equilibrium distribution πNx for x ∈ [0, 1]
(vertical scale arbitrary), given by the approximation exp{Nφ(x)},
showing the long-term distribution of the proportion of consumers
purchasing product A. In each case, there are 50 consumers (N =
50), a fairly small churn rate (λ = 0.1) and a bias a = 0.05, so that
product B has a small natural advantage (because a > 0). Left:
the linear model (30) with no sociological effect (i.e. µ1 = µ2 = 0).
The expected market share of product A is calculated to be 40%,
which agrees with the value λ/(2λ+a) given in Section 5.1. Centre:
the linear model with µ1 = 0.3, µ2 = 0.1, so that both products
enjoy a sociological effect but product A has stronger ‘bonding’ (the
number of people buying A has a greater effect on other consumers
than those buying B). The expected market share is calculated
to be 59%, so the brand managers of product A have effectively
countered the natural advantage of product B using sociology.
Right: the quadratic model (33) with µ1 = 1.3, µ2 = 1. In this
case the marketplace becomes strongly polarised, and consumers
clearly ‘lock-in’ to just one of the products. The two peaks near
x = 0 and 1 show that the most likely outcomes are that almost all
consumers buy product A, or almost all buy product B: which of the
two actually occurs will depend on random initial fluctuations (and
it is possible that after a long time the situation might randomly
‘flip’ to the other peak). The concept of ‘expected market share’ is
effectively meaningless here.
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or, in the limit N → ∞ (and nonzero x),

(30) φ′(x) = ln
(1 − x)(λ + µ1x)

x(λ + a + µ2(1 − x))
.

This equation may be solved exactly, though the solution is too messy to be included
here. The solution for φ represents the long-term distribution of the proportion of people
buying product A.

The expected market share of A is easily shown to be

∫ 1

0
x exp

(
Nφ(x)

)
dx∫ 1

0
exp

(
Nφ(x)

)
dx

.

For large N , this is given approximately by the value of x at which φ has a maximum;
this value can easily be found by solving φ′(x) = 0 analytically. If µ1 = µ2 (i.e. the
sociological impacts of A and B are identical) then the market share is found to be
λ/(2λ + a), which is, as expected, identical to the market share without sociology found
above in Section 5.1. However, if A and B have different sociological impacts then the
market share may be affected significantly: see Fig. 6 (left and centre).

This Markov model is a linear one, in the sense that sociological effects are modelled as
linear functions of n in (27) and (28). The corresponding ODE model comes from taking
γ = 1 in Section 4.7 Interesting results can also be obtained with a quadratic Markov
model (corresponding to the ODE model with γ = 2) by changing the transition rates
given in (27) and (28) to

(31) λ + µ1(n/N)2

and

(32) λ + a + µ2[(N − n)/N ]2

respectively. Much of the above analysis is unaltered; the new equation governing φ(x)
is

(33) φ′(x) = ln
(1 − x)(λ + µ1x

2)

x(λ + a + µ2(1 − x)2)
,

which can also be solved exactly (but even more messily than before!). The solution for
φ can now be either singly or doubly peaked; the double-peaked solution is akin to the
two stable equilibria found in the ODE model of Section 4. In such a solution, ‘lock-in’
may be clearly indicated, as shown in Fig. 6 (right): either one of the products can
capture a significant proportion of the market.

7In Section 4, taking γ = 1 did not induce a change in market share, but this was because the two
products were assigned equal sociological impacts.
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6 An agent-based model with social influences

In this section, we present a more general phenomenological framework for modelling
sociology in the process of choosing a product. This model borrows ideas from the theory
of coupled oscillators. Individual buyers are described by their intrinsic inclination to
buy one of two products, which we call the target and competitor products, in keeping
with Section 3. In the absence of social interaction with other consumers, the probability
xi(t) for an individual i to buy the target product evolves in time according to

dxi

dt
= xs (i) − xi.

In this equation, the ‘time’ t is an evolutionary parameter that may differ from actual
physical time; it can, for instance, measure the number of purchases previously made by
the consumer. The quantity xs (i) represents the ‘natural inclination’ of consumer i to
buy the target product and depends solely on i’s psychological profile.

Sociology is built into the model by way of introducing a coupling function Γ (xi, {xj})
between individual i and other consumers such that

dxi

dt
= xs (i) − xi + Γ (xi, {xj}) .

The precise form of the coupling function is at the heart of the modelling process. In
this work, we construct the simplest possible function that is able to reproduce some of
the qualitative collective effects observed in consumer behaviour.

As a first simplifying assumption, we shall postulate that a consumer is affected only by
the mean behaviour of the other consumers8. Thus, to begin with, we will assume that

Γ (xi, {xj}) = Γ (xi, X) , X =
1

N

N∑
j=1

xj,

where N is the total number of consumers. The variable X can be interpreted as the
market share of the target product. If X = 1

2
, then no clear trend exists in the market

and we therefore expect the coupling function to vanish. Hence, we will write

Γ (xi, X) = Γ̃ (xi, X)

(
X − 1

2

)

for some Γ̃.

We further assume that a given consumer will be more sensitive to sociological effects
if he is uncertain of his own choice, i.e. if his current probability of buying the target
product is close to 1

2
. To formalize this hypothesis, we set

Γ̃ (xi, X) = Γ̃ (X)

(
1

2
−

∣∣∣∣xi − 1

2

∣∣∣∣
)

.
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Figure 7: Bifurcation diagram showing all possible states X(K)
for ψ (xs) = 1. Full line: stable solution; dotted lines: unstable
solution.

Finally, in order to observe some kind of phase transition in the dynamics, the coupling
strength has to increase with

∣∣X − 1
2

∣∣. Since this coupling strength must be positive, we
assume that

Γ̃ (X) = K

(
X − 1

2

)2

+ O

((
X − 1

2

)4
)

.

Thus, the model we study is

(34)
dxi

dt
= xs (i) − xi + K

(
1

2
−

∣∣∣∣xi − 1

2

∣∣∣∣
)(

X − 1

2

)3

.

The input parameter K is the strength of coupling. We will now examine how the overall
share X of the target product evolves as a function of K.

6.1 Analytical results in steady state

In the steady state,

(35) xi =




xs (i)

1 − K (X − 1/2)3 if xi < 1/2

1 +
xs (i) − 1

1 + K (X − 1/2)3 if xi > 1/2.

Accordingly, the psychological profile x∗
s that corresponds to an equiprobable choice,

xi = 1/2, for the two products is given by

x∗
s =

1

2

[
1 − K

2

(
X − 1

2

)2
]

,

8It would be possible, and probably more realistic, to implement instead a nearest-neighbour coupling,
or a ‘small-world’ network in the function Γ.
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Figure 8: Numerical integration of equations (34), with 100
consumers (N = 100). For each variable xi, a random number
xs(i) was picked from a uniform distribution between 0 and 1. Left:
superposition of individual time-traces. Right: evolution of X(t).
From top to bottom: K = 0, 20, 40, 60, 80, 100.

F-32



0.5 1

0.5

1

0.5 1

0.5

1

0.5 1

0.5

1

Figure 9: Graphical resolution of the transcendental equation X =
F (X,K) with K = 10, 50, and 90 from left to right. A uniform
distribution of psychological profiles, ψ (xs) = 1, is assumed. As K
increases, new solutions appear which exhibit collective behaviour.
The ‘indecisive’ state X = 1

2
is always a solution.

provided, of course, that the right-hand side is between 0 and 1. Knowing (35), we may
now evaluate X :

X =
1

N

∑
i

xi

=
1

N

∑
xs(i)<x∗

s

xs (i)

1 − K (X − 1/2)3 +
1

N

∑
xs(i)>x∗

s

(
1 +

xs (i) − 1

1 + K (X − 1/2)3

)

= F (X,K) .(36)

The value of X is therefore given by the nonlinear equation X = F (X,K). As we will
see, for small values of K, the only possible solution is X = 1/2. However, new solutions
appear for larger values of the coupling parameter K. Let us note that if the number of
consumers is very large, then we can evaluate the function F (X,K) in the ‘continuum
limit’:

F (X,K) =

∫ x∗
s

0

ψ (xs) xs

1 − K (X − 1/2)3 dxs +

∫ 1

x∗
s

ψ (xs)

(
1 +

xs − 1

1 + K (X − 1/2)3

)
dxs,

where we have introduced the probability density ψ (xs) associated with a given
psychology profile.

Our simplifying assumptions for the form of the function Γ allow us to illustrate easily
the onset of collective behaviour in the consumption process. Fig. 9 shows the graphical
resolution of equation (36). As the coupling strength K increases, new solutions
appear where one product is markedly favoured over the other. A bifurcation diagram
representing all the possible solutions is given in Fig. 7. One should note that the
‘indecisive’ state X = 1/2 is always a solution, and moreover is always stable. This means
that, in the context of our simplified model, a significant perturbation in the market has
to be introduced in order to depart from X = 1/2, e.g. through an advertising campaign.
This is illustrated in Fig. 8, where the time evolution of the market is plotted. In the
initial conditions, we assumed that one product was slightly more fashionable than the
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other, although the natural inclination to buy either of the two products, quantified by
xs(i), was uniformly distributed. For sufficiently strong social interactions – large K – a
rapid transition to ‘locked’ state with X close to 1 is observed.
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7 The decision process

The standard Logit model for consumer choice assumes that the probability, pi, with
which a consumer buys a given product i from a range of products 1, . . . , n depends on
the value the consumer attaches to that product Vi, and the price of the product Pi. This
dependence is taken to be of exponential form (thus guaranteeing that all probabilities
are positive)

pi = C exp (Vi − sPi) ,

where s is a measure of the relative importance of price to the consumer, and C is a
normalisation constant chosen so that

n∑
i=1

pi = 1.

The value Vi is then taken to reflect the influence on the consumer of the quality of
the product, Qi, the increased likelihood of the consumer buying the same brand as he
bought previously (the loyalty effect), and the influence of neighbours (meaning people
who have an influence on a consumer, rather than physical neighbours). Each of these
dependences is taken to be linear, giving

Vi = aQi + lIi + hNi,

where Ii is an indicator function which is unity if the consumer previously bought product
i and zero otherwise, Ni is the number of neighbours who bought product i, and a, l
and h are constants measuring the relative strength of each effect (termed astuteness,
loyalty, and herding respectively).

In such a model the products are all treated independently: the only coupling between
the probabilities occurs through the normalisation constant C.

Unilever suggest that there is evidence that consumers do not evaluate all products
independently in this way, but in fact make comparisons between products when deciding
which to buy. Thus in general the probability of buying product i will depend not only
on the value and price of that product, Vi and Pi, but on the value and prices of all
products. The goal of this section is to formulate a model for this probability which
is based on binary comparisons, that is, on (possibly successive) comparisons of two
products at a time.

7.1 Binary comparisons

Suppose a consumer chooses to compare product i with product j. What is the
probability that he will choose i over j?

In the Logit model we would simply have

(37) pi = C exp (Vi − sPi) , pj = C exp (Vj − sPj) ,
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Figure 10: Products in the affordability-value plane. The shaded
region is the region of products dominated by product 1.

where C is chosen so that pi + pj = 1.

An alternative approach would be to suppose that the probability depends on the
difference in value and the difference in price of the two products, that is

(38) pi = 1 − pj = F ((Vi − Vj) − s(Pi − Pj)) ,

where F is some function that maps (−∞,∞) to [0, 1] (for example F (x) = (1 +
tanh(x))/2).

Another approach would be to consider the position of the products in the affordability-
value plane (where affordability A = 1/price), and introduce the idea of dominance.
Consider, for example the three products shown in Fig. 10. If we try and compare first
products 1 and 2, we see that product 2 has a lower affordability (i.e. a higher price)
than product 1, but it also has a higher value. Thus the consumer has to make a decision
on which of value and price is the most important. However, when we compare products
1 and 3, product 3 is of lower value than product 1, and has a lower affordability, and
therefore given a choice between product 3 and product 1 a rational consumer should
choose product 1 every time. In this situation we say that product 1 dominates product
3. In general a product dominates any product which lies to the left and below it in the
affordability-value plane, so that product 1 dominates any product in the shaded region
in Fig. 10.

For the comparisons between products where neither is dominated, we can use either the
Logit model (37) or the alternative (38).

To see how such a model gives rise to the probabilities of choosing each product we need
to construct a decision tree. In forming the decision tree we have to decide which two
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Figure 11: Level 1 decision tree for the products shown in Fig. 10.

products the consumer will choose to compare. We assume initially for simplicity that
this decision is uniformly random, so that there is an equal probability of choosing each
pair. We also have to decide how many comparisons the consumer will make, that is,
having chosen a winner between the first two products, the consumer may then compare
this winner with another product, and so on. Each level of the decision tree will have two
stages, the choice of which products to compare, and the outcome of the comparison.

7.1.1 Level 1 decision tree

The simplest decision tree for the three products shown in Fig. 10, with one level of
comparison (that is, the consumer stops after comparing just two products) is shown in
Fig. 11. Let us assume that products 1 and 2 are equally attractive to the consumer, so
that in the absence of product 3 each would have a probability of selection of 1/2. We
can then see what the introduction of product 3 does to this balance of probabilities, and
in particular whether there is a decoy effect, that is, since product 1 dominates product 3,
the introduction of product 3 might mean that more people will choose to buy product 1
(since product 1 will win in any comparison between the two). In this scenario product 3
acts as a decoy, channelling consumers to product 1. Let us assume that the probability
of choosing product 3 over product 2 in a comparison is p.

The probability of reaching any leaf in the decision tree is simply the product of the
probabilities of taking each branch required to get there. Thus, after introducing product

F-37



3 the probabilities of choosing each product are

p1 =
1

3
× 1

2
+

1

3
× 1 =

1

2
,

p2 =
1

3
× 1

2
+

1

3
× (1 − p) =

1

2
− p

3
,

p3 =
1

3
× 0 +

1

3
× p =

p

3
.

Thus we see that in this simple model there is no decoy effect; the probability of choosing
product 2 has decreased, but the probability of choosing product 1 is the same as it
was before product 3 was introduced. This (perhaps surprising) result occurs because
although there is now a proportion of binary comparisons that product 1 is guaranteed
to win (those between products 1 and 3), there is also a proportion of comparisons that
do not involve product 1 at all (those between products 2 and 3). Thus there is a chance
that the consumer does not even choose to examine product 1, and this exactly offsets
the effect of the decoy.

A simple modification of this model can be used to consider the effect of a decoy
on product 1 when there is more than one competitor. Suppose that instead of one
competitor (product 2) there are n competitors to product 1, and that all the competitors
are equivalent from the point of view of the consumer. Then we can lump all the
competitors into a single product number 2, with the main change to the decision tree
being to the chance of choosing products to compare. Of course it is now possible that
the consumer chooses to compare two competitors products, and we must take this into
account. The new decision tree is shown in Fig. 12.

The probabilities of choosing each product are

p1 =
2n

(n + 2)(n + 1)
× 1

2
+

2

(n + 2)(n + 1)
× 1 =

1

(n + 1)
,

p2 =
2n

(n + 2)(n + 1)
× 1

2
+

2n

(n + 2)(n + 1)
× (1 − p) +

n(n − 1)

(n + 2)(n + 1)

=
n

n + 1
− 2np

(n + 2)(n + 1)
,

p3 =
2np

(n + 2)(n + 1)
.

Thus, again, we see that there is no decoy effect; product 1 has exactly the same market
share as it would have if product 3 were not present.

7.1.2 Level 2 decision tree

Let us now go back to just three products, and assume that the consumer does not stop
at one level of comparison, but takes the winner of the first comparison and compares
it with the remaining product. In this case we have the level 2 decision tree shown in
Fig. 13. Note that for the second comparison there is no choice of products to compare,
since there is only one product remaining.
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The probabilities of choosing each product are now

p1 =
1

6
+

1

6
+

p

3
+

1 − p

6
=

1

2
+

p

6
,

p2 =
1 − p

6
+

1

6
+

1 − p

6
=

1

2
− p

3
,

p3 =
p

6
.

Thus in this case the market share of product 1 does increase, so that there is a decoy
effect. Note, however, that the market share of the decoy product number 3, is the same
as the increased market share of product 1.

7.2 Loyalty

7.2.1 Product awareness

Let us now try and model the effect of product loyalty. We will use the model to
determine the probability that the consumer buys product i this time given that he
bought product j last time. In the language of Markov chains these are the transition
probabilities for the state of the system, with the state being given by the last product
the consumer bought.

Now, we can model the effect of loyalty as in the Logit model, by increasing the
probability of a product winning a binary comparison if it is the product which was
bought last time. A more immediate effect of loyalty though, is in our initial choice of
products to compare. Rather than the initial choice of two products to compare being
random, we will choose to compare our current product with another one chosen at
random.

Implementing this idea in our three-product scenario, we now have three decision trees,
one for each current choice of product. These are shown in Fig. 14.

If we now let pij be the probability of moving from product j to product i then the
transition matrix T = (pij) is given by

T =




3
4

1
4

1
2

1
4

3
4
− p

2
1
2
− p

2

0 p
2

p
2


 .

The average market share of each product can now be calculated as a fixed point of the
transition matrix, that is, an eigenvector with unit eigenvalue. If fi is the market share
of product i (fi is average fraction of times that the consumer will buy product i), then

T


 f1

f2

f3


 =


 f1

f2

f3


 ,
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Figure 14: Level 1 decision tree for transition probabilities with 3 products.

giving

f1 =
2 + p

4 + p
, f2 =

2 − p

4 + p
, f3 =

p

4 + p
.

For small p these are

f1 ∼ 1

2
+

p

8
, f2 ∼ 1

2
− 3p

8
, f3 ∼ p

4
.

Thus there is a small decoy effect, but the market share of the decoy product is twice
the increase in market share of product 1.

7.2.2 Perceived product value

Let us now also include the effect that loyalty may have on individual comparisons. The
model we use model to determine the probability of winning a comparison is a variation
of (38). Specifically, we set

(39) prob(choose i over j) = F (∆ij)

where

(40) ∆ij = sV (Vi − Vj) + sA(Ai − Aj)
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where A = 1/P is the affordability, sV and sA are the sensitivities to value and
price respectively, and F is some function that maps (−∞,∞) to [0, 1] (for example
F (x) = (1 + tanh(x))/2). We can now model the effect of loyalty as an increase or
decrease in ∆, as in the Logit model. Thus the probability of switching from j to i in a
binary comparison is

F (∆ij − L),

where L measures the strength of the loyalty effect, while the probability of staying with
j is

F (∆ji + L) = F (−∆ij + L).

We consider again our three-product scenario, with products 1 and 2 equivalent to the
consumer, so that ∆12 = 0, and product 3 the inferior decoy, so that ∆ = ∆13 = ∆23 > 0.
The decision tree is shown in Fig. 15.
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The transition probabilities are given by

T =




F (L) + 1

2

F (−L)

2

1

2

F (−L)

2

F (L) + F (∆ + L)

2

F (∆ − L)

2

0
F (−∆ − L)

2

F (−∆ + L)

2




.

The steady-state market shares are given by

f1 =
F (−∆ − L) + F (−L) + F (∆ − L)F (−L)

2F (−L) + F (−∆ − L) + F (−L)F (−∆ − L) + 2F (−L)F (∆ − L)
,

f2 =
(1 + F (∆ − L))F (−L)

2F (−L) + F (−∆ − L) + F (−L)F (−∆ − L) + 2F (−L)F (∆ − L)
,

f3 =
F (−∆ − L)F (−L)

2F (−L) + F (−∆ − L) + F (−L)F (−∆ − L) + 2F (−L)F (∆ − L)
.

Let us compare this result to that which would arise from the Logit model. There the
transition probabilities are given by

TL =




F (L)

1 + F (−∆ − L)

F (−L)

1 + F (−∆ − L)

F (∆ − L)

1 + F (∆ − L)

F (−L)

1 + F (−∆ − L)

F (L)

1 + F (−∆ − L)

F (∆ − L)

1 + F (∆ − L)

F (−∆ − L)

1 + F (−∆ − L)

F (−∆ − L)

1 + F (−∆ − L)

F (−∆ + L)

1 + F (∆ − L)




.

The steady state market shares are given by

fL1 =
F (∆ − L)(1 + F (−∆ − L))

2F (∆ − L)(1 + F (−∆ − L)) + F (−∆ − L)(1 + F (∆ − L))
,

fL2 =
F (∆ − L)(1 + F (−∆ − L))

2F (∆ − L)(1 + F (−∆ − L)) + F (−∆ − L)(1 + F (∆ − L))
,

fL3 =
F (−∆ − L)(1 + F (∆ − L))

2F (∆ − L)(1 + F (−∆ − L)) + F (−∆ − L)(1 + F (∆ − L))
.

Notice that in the Logit model the market shares of products 1 and 2 are equal and less
than 1/2. Thus there is no decoy effect in the Logit model.

The market shares of each product for the binary comparison model and the Logit model
are illustrated in Figs. 16 - 21. Note that the Logit model predicts a much larger market
share of product 3 (the decoy product), and that there is no decoy effect, that is, the
market share of product 1 is the same as the market share of product 2, and is less
than 1/2. The binary comparison model does show a decoy effect. The market share of
product 1 is greater than 1/2, and when L is large it retains a market share significantly
higher than 1/2, even though the market share of the decoy product is close to zero.
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Figure 16: Individual market shares for the binary decision model as a function of loyalty
L, with ∆ = 1. The market shares for products 1 and 2 are relative to 1/2, that is, the
figure shown is the increase in market share after product 3 is introduced.
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Figure 17: Individual market shares for the Logit model as a function of loyalty L, with
∆ = 1. The market shares for products 1 and 2 are relative to 1/2, that is, the figure
shown is the increase in market share after product 3 is introduced.
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Figure 18: Individual market shares for the binary decision model as a function of the
value of the decoy product ∆, with L = 3. The market shares for products 1 and 2 are
relative to 1/2, that is, the figure shown is the increase in market share after product 3
is introduced.
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Figure 19: Individual market shares for the Logit model as a function of the value of the
decoy product ∆, with L = 3. The market shares for products 1 and 2 are relative to 1/2,
that is, the figure shown is the increase in market share after product 3 is introduced.
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Figure 20: Total market share of products 1 and 3 combined as a function of the value
of the decoy product ∆, with L = 3.
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Figure 21: Total market share of products 1 and 3 combined as a function of loyalty L,
with ∆ = 1.
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One interesting observation from Fig. 20 is that the total market share of products 1 and
3 is not monotonic in the loyalty parameter L. The market share of product 3 decreases
with loyalty, while the market share of product 1 increases with loyalty. The combined
market share decreases with loyalty initially, but then increases.

When the decoy product is really bad, ∆ → ∞, the market shares are given by

f1 =
1

2
, f2 =

1

2
, f3 = 0,

in both the binary decision model and the Logit model. When the loyalty effect is strong,
L → ∞, then the limit is more subtle, and depends on the behaviour of the function F
for large negative argument. The market shares are given by

f1 ∼ F (−∆ − L) + F (−L)

2F (−L) + F (−∆ − L)
,

f2 ∼ F (−L)

2F (−L) + F (−∆ − L)
,

f3 ∼ F (−∆ − L)F (−L)

2F (−L) + F (−∆ − L)
.

With F (x) = (1 + tanhx)/2 we have

F (x) ∼ e2x as x → −∞,

this gives

f1 ∼ 1 + e−2∆

2 + e−2∆
, f2 ∼ 1

2 + e−2∆
, f3 ∼ e−2L−2∆

2 + e−2∆
.

Note that in the limit of strong loyalty, no one buys the decoy product, but there is a
decoy effect as the market share of product 1 is increased. The corresponding limit in
the Logit model gives

fL1 ∼ 1

2 + e−4∆
, fL2 ∼ 1

2 + e−4∆
, fL3 ∼ e−4∆

2 + e−4∆
.

In this case consumers continue to buy product 3, but the market share of products 1
and 2 is much closer to 1/2, since the correction is O(e−4∆) rather than O(e−2∆).

7.3 Networks

So far we have been considering each consumer in isolation. We can now generalise
the model to a network of consumers. We will represent each consumer as a node in a
graph, and link each consumer to some of the other consumers, which we will term his
neighbours. Note that this label has nothing to do with physical proximity, but simply
means that the two consumers are linked in the network. The links represent the other
consumers who have an influence on this consumer; they may be friends or colleagues,
or even celebrities used to advertise products. We can even imagine some nodes in the
networks as being advertisements.
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product 1 product 2 product 3

value 0.75 0.25 0.2
affordability 0.25 0.75 0.7

Table 2: Parameter values used in the simulations

Now we have to decide how the neighbours influence our consumer. As with loyalty,
there are two possibilities. The neighbours could influence the consumer’s perception of
a product, or they could simply bring the product to his attention, thereby influencing
the probability that he chooses the product to compare in one of his binary comparisons.
The simplest model is to assume that the first binary comparison a consumer makes is
between his present product and one chosen randomly from one of his neighbours. We
consider a slightly more general model, in which the consumer compares his present
product with a randomly chosen neighbour’s product with a certain probability Pnbr,
but with probability 1 − Pnbr he chooses another product to compare with at random
from the entire range of products.

7.3.1 Types of network

We simulated three different types of network. Each had 100 vertices (or nodes) and 200
edges. The regular network is simple a square lattice ‘wrapped around’ at the edges,
so that each consumer is connected to his 4 nearest neighbours. The random network
places 100 vertices down and then chooses 2 vertices at random to connect with an edge
until all 200 edges have been placed. The scale free network (also know as a small
world network) is generated by starting with the complete graph on five vertices (that
is, each vertex is connected to every other vertex) and then adding vertices one at a
time. Each vertex that is added is connected randomly to two other vertices, with the
probability of connecting to a given vertex proportional to the degree of that vertex (that
is, the number of edges currently connecting it to other vertices).

We also allow the possibility of including the effects of advertisments. These we model
in the following way. We add one extra vertex for each product, and connect it to 10
other vertices chosen at random. The advertising node never changes its product.

In the simulations we have three products as usual. We choose the values and
affordabilities of the products as shown in Table 2. We take the sensitivities to price
and value to be equal to unity for each consumer (so that sV = sA = 1), and we take
F (x) = (1 + tanh(x))/2. This makes products 1 and 2 equivalent and has ∆ = 0.1.
We take the loyalty parameter to be L = 2.7. Thus for isolated consumers who are not
networked the market shares should be

(41) f1 = 0.6439, f2 = 0.3548, f3 = 0.0013.
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7.3.2 Results

Figs. 22, 23 and 24 show the results for the scale free, random and regular graphs
respectively. We see that qualitatively there is very little to choose between the different
types of network for the simulations presented.

• We see that in the absence of adverts and with Pnbr = 1 (so that the consumer
always compares his current product to a chosen neighbour’s product) we get lock-
in, whereby one product reaches a 100% market share (Fig. 22(a)). Although
lock-in is almost certain to occur, it may take a long time to do so. In Fig. 22(b)
lock-in has still not occured, even after 30,000 iterations.

• In Figs. 22(c) and 22(d) we see the effect of including advertisements. The main
effect is to prevent lock-in, since there is always at least one vertex associated with
each product (the advertisements), from which market share can develop. Even
with advertisements though, market share is still very volatile; Figs. 22(c) and
22(d) correspond to two simulations using exactly the same initial conditions and
parameter values.

• In Figs. 22(e) and 22(f) we see the effect of increasing the probability of choosing a
random product to compare with from zero to 0.3, both with and without adverts.
This also has the effect of removing lock-in. Market share is also much more stable
in this case, oscillating about the predicted average values. Note also that market
share is more stable with adverts than without.

The simulations shown in Figs. 22 - 24 represent only the start of an investigation into
the effects of different types of network and different parameter regimes. Clearly there
is a lot of scope for future more detailed investigations in this area.
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(e) With adverts, Pnbr = 0.7
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(f) No adverts, Pnbr = 0.7

Figure 22: Scale free graphs
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(d) With adverts, Pnbr = 0.7
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(e) No adverts, Pnbr = 0.7

Figure 23: Random graphs
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(d) With adverts, Pnbr = 0.7
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(e) No adverts, Pnbr = 0.7

Figure 24: Regular graphs

F-52



8 Networks

In this section we consider the propagation of consumer behaviour across a square lattice
(generalizations to other geometries are straightforward) in which each node represents
an individual. Each node/individual, denoted by the pair (I, J), makes a choice between
a number of products depending on the products’ properties and on the views or opinions
the ‘preceding’ nodes, i.e. those that lie below or to the left on the square lattice. We
consider two or three products, characterised by their qualities, such as affordability. As
an individual, a node has a psychology and a sociology, which determine its perception
of each product. These can be modelled with various degrees of sophistication.

8.1 Propagation of a consumer preference through a network

We consider here a simple linear model. Each node (I, J) is given, as psychology, a
sensibility κk

IJ to each quality k. Moreover, each node, as sociology, is influenced by the
preceding nodes through a coefficient λIJ . We have taken the interaction between the
nodes so that (I, J) is affected only by its two immediate neighbours, (I − 1, J) and
(I, J − 1), and both exert the same influence per individual (the area of influence is easy
to generalize). In our simulations, the coefficients κk

IJ and λIJ are positive and randomly
chosen from a uniform distribution. Consumer (I, J) forms an opinion or view, in the
form of a composite numerical value, on product i according to

V i
IJ =

∑
k

κk
IJQki + λIJ(V i

I−1,J + V i
I,J−1) for I > 0 , J > 0 ,

with Qki being the value of quality k for product i; V0J and VI0 are taken as zero for I
and J positive. Consumer (I, J) chooses to buy the product i for which V i

IJ is largest;
if there is no clear-cut ‘best’ buy, no product is bought. The process here starts from
node (1, 1) (but could start at any node or nodes of the lattice). The initial value V00

is always taken to be 1 here (although away from the bottom left in Figs. 25 and 26,
the value of V00 has only minor effect.) This initial information can be regarded as an
advertising process injected into the system. (Alternatively, such values can be used in a
version with successive propagations over the lattice, to boost or handicap the coming of
a new product onto the market, taking into account the loyalty of the consumers; such
a model would be able to track the variation of market share over time.)

Six simulations have been carried out using the same uniform random distribution for
µIJ = κ1

IJ , κIJ = κ2
IJ and λIJ . Fig. 25 shows the share of the market on a 10,000-node

lattice for two products A and B, depending on different values for their qualities Q1 = P
and Q2 = Q. We observe its spatial evolution according to the position of the product A
on, above or below the trade-off line through B (fixed by having the same distributions
for µ and κ). Fig. 26 shows the effect of the introduction of a third product C on the
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Figure 25: Share of the market between A (black) and B (white)
depending on the position of A with respect to the trade-off line.
The propagation over the lattice starts from the lower left corner.
If A lies above the trade-off line, it achieves much higher market
share than if below it.
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Figure 26: Share of the market between A (black) and B (white)
and C (brown) depending on the position of C, always taken to be
above the trade-off line. The propagation over the lattice starts
from the lower left corner. Product C acquires market share more
heavily from the product to which it is closer in product space.
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market, and the transfer of buying behaviour from A or B to C depending on the position
in ‘quality space’ of C in relation to the other two products.

The introduction of the third product C with low P and Q, so that it lies below the
trade-off line, cannot produce a decoy effect in the basic form of the model, since
consumers purchase simply according to highest V .9 A move of the market towards
C in a linear model as presented here requires the possibility of negative values for
αIJ or κIJ . The introduction of negative values for µ or κ decreases the rôle of the
psychology (i.e. the contribution of terms µIJP + κIJQ) and makes the sociology the
main factor in the propagation, through the term λIJ(VI−1,J + VI,J+1). Negative values
of µ or κ are consistent with irrational behaviour, with people preferring over-priced
or inferior products. Negative values of λ could signify people wanting to be different
from their neighbours. The model can be easily modified, by introducing functions more
sophisticated than simple linear ones, e.g.

VIJ = AIJ(P ) + KIJ(Q) + LIJ(VI−1,J , Vi,j+1) .

9Note, however, that the introduction of a third product may itself change the trade-off line (see
Fig. 2).
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9 Some other models

This section is rather more speculative and considers the possibility of people not so much
preferring a product as aiming to make their purchases to suit their quality requirements.
Consumers vary their position in quality space over time, and it is this position which
determines which product(s), if any, they buy. This concept is extended to allow for a
large number of products, the number being large enough for the products to be treated
as a continuum with a density – a new continuous variable – in quality space.

9.1 A particle-dynamics model

The basic idea is to build a model based on a physical analogy, between the consumers’
buying behaviour and particle-particle dynamics. We assume consumers to be particles
moving in quality space. The products are considered as sources of attractive potentials,
the details of the potentials depending on the products’ characteristics. The psychology
of people will be regarded as the influence of the potential on the ‘mass’ of the particles.
This will depend on the consumer but also on the characteristics of each product,
weighted by coefficients of ‘choice’. The sociology of individuals can be considered as a
form of particle-particle interaction (although this is not pursued explicitly here). We
then look at the evolution of consumer-particles. We define a critical radius around each
product and assume that people buy the product if they get within this distance of it.

Definition of the product space and potential. Following what has gone before,
the product space is defined by just two characteristics for each product i: affordability
Pi and quality Qi. We can define an ‘attractiveness’ of a product as the ‘distance’ of the
product from the origin in product space: Ui = (Pi + Qi)/2. With this definition, all
the products with Pi + Qi = constant will have the same attractiveness. The attractive
potential of the product i will be proportional to Ui. In the following we have taken the
simple potential

Fx(x) = −
∑

i

(x − Pi)Ui , Fy(y) = −
∑

i

(y − Qi)Ui ,

where x and y are the coordinates of a consumer in (P,Q) space.

Implementation of psychology. It is the psychological ‘mass’ ψ of a consumer that
makes the difference in the choice of two products of the same attractiveness (although
to call ψ a mass is somewhat inaccurate, since it also depends on the consumer’s
environment). To put some detail on the model, introduce the variations from the
mean of P and Q of each product: Dpi = Pi − Ui and Dqi = Qi − Ui. For each product,
ψ will have the following three characteristics:

• For each product it is inversely proportional to its affordability (x direction) or
quality (y direction).
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Figure 27: Product space with three products.

• It also depends inversely on the distances Dp and Dq, which quantify the
importance of P and Q. The distance is modified by comparing it to the sum
of all remaining distances:

D
′
pi =

Dpi∑
j �=i Dpj

and similarly for D
′
qi. The modified distances indicate the relative importance of

particular Pi’s (and Qi’s) in comparison to the others. This comparison will also
play a key rôle when introducing a decoy product.

• Both these dependencies are weighted by numerical coefficients (α and β) that give
the importances of affordability and quality for the consumer: the more important
the criteria is to the consumer, the lower the ‘inertia’ that is attributed to the
‘best’ product regarding this criteria.

Putting these observations together, we have, for consumer i,

ψxi =

[(
αi

D
′
p1

+
βi

D
′
q1

)
/P1 + · · · +

(
αi

D′
pnp

+
βi

D′
qnp

)/
Pnp

]

and the equivalent for ψyi with Q replacing P . Here np is the number of products.

Implementation of sociology. Sociology could be seen as some particle-particle
interaction but we have not tried to implement it here.

Equations of motion. We assume that the ‘velocity’ of consumer i in product space
is proportional to the attractiveness divided by the mass. For each consumer we have:

dxi

dt
=

∑
i

Fx(xi)/ψxi ,
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dyi

dt
=

∑
i

Fy(yi)/ψyi .

Preliminary results

• In Fig. 28 we have two products of the same attractiveness and three different
consumers. In green and black we have two consumers who are quite sensitive to
affordability and quality, respectively, whereas the blue one slightly prefers quality.
Their choices reflect their psychology.

• In the Fig. 29 we have the same three consumers with three products of the same
attractiveness. This time the behaviour of the first two consumers does not change
but the last one will choose the product that offers the best balance between
affordability and quality. Here again the results reflect the psychology of the
consumers.
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Figure 28: Evolution of three different
consumers towards two products of the
same attractiveness
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Figure 29: Introduction of a third,
‘middle-range’ product of the same
attractiveness

• Fig. 30 introduces a decoy product. We start with the choice of products reached in
the first simulation (Fig. 28). The decoy will influence the psychology of consumers
by fundamentally modifying

∑
Dpj and

∑
Dqj. The quality and affordability of

products relative to the others, i.e. the perception of the product by the consumer,
is then modified. This results in the change in the behaviour of the third consumer
(cyan line). An improvement of the model would increase this effect for the third
consumer.
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Figure 30: Influence of a decoy product.

Conclusions. This rough model is able to reproduce a few features of observed
consumer behaviour, but there is scope for many things to be improved. For example,
the choice of initial conditions and the choice of type of ‘attractive potential’. Social
(particle-particle) effects are also to be included.

9.2 A continuum of products

The Study Group gave some consideration to ‘moving’ products, i.e. products whose
price and/or other attribute(s) change over time. There was also some discussion of
having so many products that, instead of a finite number evolving over time in quality
space, they would form a continuum, with an evolving density in quality space. More
progress was made with a static continuum: with respect to quality coordinates Q, the
products have a ‘density’ Y (Q) (= number of different products within a ‘unit volume’
of quality space). The market shares of individual products, Xi, are likewise replaced by
a rate of consumption per unit volume, and so also a density, but one which varies over
time, X(Q, t). This population density can be thought of as being made up of individual
consumers, who change their preferences, gradually, over time, as they keep purchasing
at the same uniform rate.10 There is then a velocity, dx/dt , associated with consumers
at the point x in quality space at any particular time. This velocity will be determined by
psychological, and possibly sociological, considerations. The trajectories can be identified
with a resulting hyperbolic partial differential equation for the population density X.

The concept of outlier avoidance suggests that consumers should prefer products similar
to others, i.e. they change their choice of product to move towards zones (in quality
space) of higher product density. This suggests a velocity (see Fig. 31) something like

dx

dt
= ∇Y .

10The total market share is
∫
P+ X dQ ≡ 1, integrating over the set P+ = {Q : Qk > 0 for all k} of

realistic quality values.
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Q1

Figure 31: Consumer movement due to outlier avoidance. The
dashed curves are lines of constant product density.

On the other hand, with a utility function, U(Q; Y ), depending on the distribution Y of
products, consumers can be expected to move towards ‘better’ products and this would
suggest (see Fig. 32),

dx

dt
= ∇U .

The idea of minimum anticipated regret suggests similar behaviour. (Decision process

Q1

Q2

0

Figure 32: Consumer movement due influenced by ‘overall quality’.
The dashed lines are where the utility function is constant.

change will not arise here as we have a very large number of products.)

Combining these psychological considerations, dx/dt = a1∇Y + a2∇U . Here U will
be an increasing function of the qualities Qk (components of Q), such as β ·Q with
β = (β1, . . . , βnq) and all the βk’s non-negative, whereas Y will have a global maximum
at some point Q∗ (possibly on the boundary of P+, i.e. Q∗

k = 0 for some k) and should
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decay rapidly as |Q| → ∞. To avoid consumers drifting off to unrealistically high
qualities, the velocity might be modified to give something like

(42)
dx

dt
= a1∇Y + a2Y ∇U .

The velocity dx/dt leads to a flux of consumers, q = Xdx/dt , and then conservation of
custom (market share), ∂X/∂t + ∇·q = 0, means that

(43)
∂X

∂t
+ ∇· ((a1∇Y + a2Y ∇U) X) = 0 .

If new consumers are not to appear out of thin air, there should be no flow of them
across the boundary of P+:(

a1
∂Y

∂Qk

+ Y
∂U

∂Qk

)
X = 0 on Qk = 0 .

Solving (43) by the method of characteristics, i.e. integrating along the path given
by (42), would indicate that market share gets concentrated around points where
a1∇Y + a2Y ∇U = 0. In particular, if we could write a1∇Y + a2Y ∇U = ∇V for
some function V (Q) (which will not, in general, be the case), the market share would
build up near maxima of V and become zero elsewhere.

‘Positive’ social effects, with people tending to purchase similar products as their
friends (without proper networking considerations) might lead to migration towards more
popular items, suggesting a velocity of the form

dx

dt
= ∇X , or |∇X|γ∇X .

Combining this with (42) now leads to

(44)
∂X

∂t
+ ∇· ((a1∇Y + a2Y ∇U) X) + a3∇·(X∇X) = 0 ,

which is a backward heat equation. Such problems are well known to be ill posed. This
‘wrong’ diffusivity might possibly be corrected by including an additional random drift
term (changing preferences as a Brownian motion) to get

∂X

∂t
+ ∇· ((a1∇Y + a2Y ∇U) X) = ∇·((1 − a3X)∇X) .

However, a ‘negative’ social effect, people wanting something different from their friends,
reverses the direction for the original velocity and a forward (well-posed) diffusion
equation results:

∂X

∂t
+ ∇· ((a1∇Y + a2Y ∇U) X) = a3∇·(X∇X) .

An attempt might also be made to include geography as another continuum variable;
this means allowing for a continuum of agents. If y represents location of consumers,
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e.g. position along a street, the market-share density is now additionally with respect
to, and dependent on, this new independent variable: X = X(Q,y, t). The psychology
gives rise to the same sort of terms as before. Sociology can now lead to influences of
neighbours as well as, or instead of, friends, flatmates or family members. If this is
such that distributions should tend to equilibriate, we might expect to include a term
of the form D∇2

yX on the right-hand side of (44). Alternatively, if people at y are
influenced according to what neighbours do overall, the model might be changed by
adding a4∇2

y

∫
P+ QX dQ to the velocity.

Modelling agent position as a relevant continuum variable is easier if we return to just two
distinct products, so that X(y, t) is the market share of the first at location y and time
t. If, in contrast to Section 4, the rate of change of market share is given by subtracting
the market share from the average of that of the neighbours (in a discrete analogy), we
expect ∂X/∂t = D∂2X/∂y2. Combining this with the terms which appeared in Section 4,
the market share now evolves as

∂X

∂t
= D

∂2X

∂y2
+ (1 − 2X)(1 − KX + KX2) .

Apart from the ‘trivial’ steady states, X ≡ X±, this also has steady solutions which link
these two lock-in values and others which are periodic in y. In two space dimensions,
and taking D to be ‘small’, this equation exhibits ‘motion by mean curvature’, with the
boundary between regions of X ∼ X± gradually getting shorter. A biased version, say

∂X

∂t
= D

∂2X

∂y2
+ 1 − αX + KX(1 − X)(2X − 1) ,

with α between 1 and 2 if the first product is to be preferred, has travelling-wave
solutions linking X±. In common with the agent-based Ising-type model, on which
Unilever has performed large-scale simulations, the model is of a sort that is used to
model phase transitions. It is therefore unsurprising that the models exhibit lock-in
behaviour, analogous to having distinct phases.
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10 Concluding remarks

The discussions over the course of the week barely scraped the surface of a potentially
huge subject. The hierarchy of models identified so far, which is by no means exhaustive,
suggests that a vast amount of modelling could be done. It is clear that even with the
models touched on during this study there is scope for much further work, for instance
extending consideration of networks to get reasonable representations of social effects,
carrying out more numerical simulations, especially with discrete-time, stochastic and
agent-based models, or allowing for memory (or ‘history’). Even relatively simple things
remain to be done, for example looking at social interactions (particle-particle influences)
in the particle model of Section 9 or looking at how a decoy might be used to switch
lock-in according to models such as those of Section 4.

Of perhaps academic interest is the question of how realistic simple models might be,
e.g. can a simple, lumped, deterministic model exhibit real-life behaviour (qualitatively
and perhaps quantitatively) as well as an exhaustive suite of stochastic simulations with
many agents? Whatever else, the use of any of the models suggested to date (lumped
or agent, deterministic or stochastic, etc.) requires a good knowledge of the terms (e.g.
the sort of nonlinear functions and preferably values of numerical constants) that appear
in the equations. Acquiring such knowledge might well entail collaboration with and/or
acquisition of data from market researchers and/or psychologists.
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