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Executive Summary

The following report details two main themes:

1. Classical Failure Criteria. Sections I and 2 are the response to the specific Elkem questions
about the electroderesponse to thermal stresses. In particular, three failure criteria based on
classical macroscopic theories of crack initiation and propagation were compared. Unfortunately
the usefulness of these predictions is obscured by uncertainty about the time scales over which
various mechanical and thermal mechanisms act.

2. New Theories for Damage. A radically different theoretical approach (described in §3
and §4) involves modelling the mechanical failure of the electrode in terms of "damage", i.e. the
local volume fraction w of material that has undergone microfracture. Thus w is zero in pristine
material and saturates at a critical value, say unity. The key idea is to model the temporal
growth of w with a rate equation, the rate being an increasing function of the local stress (7 but
also depending upon w. As in the case of simple chemical reactions, damage can be limited if (7

is not too large, but it can increase to unity when (7 exceeds a threshold value.
A simple paradigm was devised to ascertain the general features of the rate equation and this

highlighted the importance of the global stress distribution throughout the electrode. The most
important new idea was the incorporation of spatial variations into the model, which led to a novel
coupled equation for (7 and w. These immediately revealed the possibility of confined regions of
damage becoming unstable to small spatial inhomogeneities and hence spreading through the
electrode as "travelling waves" .

One paradox emerged concerning the dependence of the damage growth on the electrode size,
which does not appear to correlate well with Elkem experimental data. It is hoped this paradox
can be resolved and the whole theory tightened up at the forthcoming workshop at the Newton
Institute in Cambridge.

1 Introduction

The general aim was to investigate what were the key effects and factors influencing, and in
particular causing, a major breakage of a Sederberg electrode. During normal operation in an
electric furnace an electrode is subject to high temperature gradients and temperature changes as
the electrode is moved down (typically at about lm/ day) but with these slow changes over time,
thermal stresses cause no significant damage. If the furnace is temporarily shut down for some
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reason, the differing changes in temperature in the outer and inner parts of the electrode cause
varying thermal contraction and expansion during cooling and subsequent reheating, resulting in
extra internal stresses. Fracture, an expensive event, can sometimes happen during this procedure.

One eventual target would be to understand how to select pastes, from which the electrodes
are made, having mechanical and thermal properties which make breakages less likely during
shut downs. (Some better understanding of how the electric currents, and resultant heating in
electrodes, are best reduced and then increased again, in ways conducive to electrodes staying in
one piece, might also be beneficial.)

The work done during the Study Group focused on three aspects:
(1) identifying the importance of various groupings of material properties regarding fracture

to see what sorts of materials might be more, or less, liable to break;
(2) briefly considering a simple thermal problem to check which regions of an electrode cool

faster than others;
(3) looking at a model for "damage" with the eventual aim of seeing how a substantial break

in an electrode can form and grow.
The group spent most of its time working on the last of these but only a few very simple

configurations were considered. Ideally, such models would be taken much further, and combined
with considerations-such as (1) or (2), to see if a particular paste is likely to make a poor electrode
or how furnaces should be shut down and restarted to minimise danger of breakage.

2 Important Thermo-mechanical Properties

The identification of which parameter groupings (Hasselman, Schneider & Coste) might be sig-
nificant was done by considering the possible consequences of changing the internal heating rate.
This very simple approach entails looking at changes in steady temperature resulting in a change
in volumetric power; thus the results can only be applied over time scales greater than all thermal
and mechanical relaxation times.

For a change of energy produced per unit volume per unit time ~Q, the temperature (even-
tually) changes by an amount of size

where ,\ = thermal conductivity of the object being heated (or cooled) and L is a typical length
scale of the object (e.g. the radius of the cross-section for an electrode). The resulting (relative)
displacements are then typically

with a = coefficient of thermal expansion, and thermal stresses are of order

Ex displacement/ L = aE b:.Q L2 /,\

for E = modulus of elasticity.
One quantity relevant for fracture is the "tensile strength" of a material:

it = stress at which a crack can form

For a material to start to fracture (given this long-time temperature change) a thermal stress
should exceed the tensile stress:
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Equivalently, cracks should not start to form in the material if

R =: "resistance to crack initiation" =: Aft! aE > 6.Q L2.

(For the electrode pastes under consideration in the Study Group, R:::::: 410 W m-I ,~100 W m-I, i
450Wm-1 for materials A, B, C respectively; L is typically 1 m and 6.Q::::::105Wm-3 so, given
enough time, fractures will form.)

Another material quantity is the "fracture energy", GF,

GF X Area = energy used to form a break.

This quantity is measured by first making a cut in a bar of the material and then breaking the
bar, with the area of the fracture being the part of the cross-section not already cut. (Force
is applied so as to try to bend the bar.) The energy needed to form the break is given by the
work done by the applied forces in obtaining specified displacements U Fdx). (On carrying out
experiments with different sized bars, energy appears to grow slightly more slowly than length
squared, possibly due to some energy being expended in damaging the bar where the forces are
applied.)

Returning to the thermally stressed material of typical length L, the elastic energy stored
(force x displacement) is of order

The energy required for a significant facture is of size

so a substantial break requires

equivalently, no major fracture is possible if

R~t =: "index for crack propagation" =: ~ vi » 6.Q L5/2.

(The three types of paste have R~t ::::::260Wm-1/2, 630Wm-1/2, 120Wm-I/2 for A, B, C,
compared with 6.Q L5/2 ::::::105 W m-1/2, which would indicate that all have the potential, given
time, to produce substantial breaks.)

Certainly it appears from this elementary discussion that both the resistance to crack initia-
tion, R, and index for crack propagation, R~t, were significant for the fracture by thermal shock,
given sufficient time (with materials B best according to both criteria, material A and C similar
with regard to the first but C definitely worst looking at the second criterion.) (See Hassel-
man and Schneider & Coste.) Some work such as Wang & Krstic indicates that small cracks,
pores and crystals can affect the effective modulus of elasticity E and thereby help to increase
R and R~t. The paper by Allard et al. illustrates the role of larger grains hindering growth
of a fracture through blocking its path and making it take longer paths. One other quantity
B =: "brittleness number" =: !?lEG F = (RI R~t)2 did not appear to have such direct relevance
for this thermo-mechanical problem.
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3 Transient Thermal Problem

The above analysis only considers the possible consequences of stresses induced by temperature
changes over a long time. Taking typical values for density, p :::: 1.4 x 103 kg m-3, specific heat,
C = 2 X 103 J kg-I K-I, thermal conductivity, A ::::5W m-I K-I, and electrode radius, L ::::1m,
the thermal "diffusion time" (balancing the time and spatial derivatives in the last equation) is
of size pC L2 / A ::::6 x 105 s ::::6 days. This indicates that for a shut-down time of about 6 hours
the electrode will not cool significantly; to be more precise, differential cooling will be confined to
a boundary layer near its surface. (This needs a little caution. For the extreme case of a sphere
of radius L, with fixed surface temperature, the temperature decay is like e-rr2)"t/pCL2 sin(rrr/L).
For material with these properties, the cooling time is then ::::6 x 104 s :::: 16 hours.) To be
more precise, a "short-time" temperature, valid for times much less than 6 days after a steady
volumetric heating rate of Q is switched off, might be looked for.

Writing temperature T(x, t) = To(x)-O(x, t) with To = steady temperature due to volumetric
heating rate, Q, 0 = cooling a time t after switch off rv -Q / pC away from the surface (distances
from the surface large compared with VAt/pC). Taking distance y from the surface comparable
with VAt/pC (y ~ L) and assuming, for simplicity, that Newtonian cooling applies so that
A ~ = h(TA - T) for some ambient temperature TA and heat-transfer coefficient h;

where 7] = #,y and cp(7]) satisfies

d2cp 7] dip 3
d7]2 + '2 d7] - '2CP = 0 for 7] > 0 ,

After some manipulation,

dcp
d7] = -1 at 7] = 0 , and cP --7 0 as 7] --7 00 .

1 2 _ Z/4 1 2 (7])
cp(7]) = 3ft(7] + 4)e 17 - 67](7] + 6) erfc '2

(erfcz = -}:;Jzoo e-s2 ds.)

For these short times, the relevant length scale is VAt/pC, not L, relative temperature changes
t::.T are of size QhA-I/2(pC)-3/2t3/2 so that thermal stresses and elastic energies are of order
aEQhA-1/2(pC)-3/2t3/2 and Ea2 Q2 h2AI/2 = t9/2 (pC)-9/2 respectively (taking the thermal
boundary-layer width to be the relevant overall distance). Now the two criteria for fractures
forming and becoming significant (again over the thermal diffusion length) appear to be

A 1/2(pc)3/2 it
--'--'---- < Qt3/2 and

aEh
(This analysis can be adapted for radiative heat transfer.)

Now that the cooling (and reheating) time is limited, the theory of §2, concerning what
fractures might form given an eternity, is not necessarily sufficient. A "non-classical" theory as
to how breaks form, and in particular how they do so over time, must be considered.

4 Damage

To see how an electrode might actually break apart, a model for the accumulation of "damage"
was looked at during the Study Group. This model was based on the work of Barenblatt &
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Prostokishin (1993); related work has been carried out by other researchers. The basic idea of
this theory for a one-dimensional object under tension is that there is a quantity w representing
damage, related to microfractures which have formed in the material and to the local (effective)
modulus of elasticity (and Poisson's ratio). Thus: w = 0 for pristine material, w = 1 when it is
totally smashed. This damage is increased when the material is under tension (J' > 0:

dw
dt = q((J',w, T)

for a material stretched uniformly, at temperature T. Barenblatt & Prostokishin suggest that the
key quantity governing the increase of the damage is (J'/ (1 - w):

: =q(l~W;w,T)

with only weak dependence upon the second and third arguments. It might then be possible to
take

q( (J', w, T) = 9 (1~w) .
Certainly, during the Study Group, time did not allow for consideration of the direct effect of
temperature on q. r

Taking a simple interpretation of damage, roughly that w is the fractional reduction in
strength, so that elastic constants are given by their original (pristine) value multiplied by (l-w),

ou
(J' ex: (1 - w) ox '

with u = displacement and ~ = strain

q((J',w,T) = 9 (~~)

Fremond & Nedjar, 1995, use a rate law given by the square of the strain for a higher-
dimensional model for concrete damage; good comparisons between experiment and theory are
claimed. In the Barenblatt & Prostokishin paper various forms of 9 are considered to see how
damage might accumulate, these forms include powers and exponentials, or Arrhenius-type laws
(allowing for sensitive dependence on strain); cut-offs are also possible, meaning that there could
be some (J'o > 0 such that g( (J' / (1 - w)) vanishes for (J' / (1 - w) < (J'o. Without further hard
(experimental) evidence 9 will, for the present, be left open but it is assumed that it is non-
negative: over timescales under consideration, electrodes do not repair themselves.

In Barenblatt & Prostokishin (and also the works of Fremond et al.), diffusionof damage is also
included. The diffusion term in the Barenblatt & Prostokishin model is derived by considering
the accumulation rate q to apply over a region whose extent is essentially the microstructure
length scale, the grain size in the present case. This diffusion term, which vanishes when stress
vanishes, then has a size inversely proportional to the square of the grain size and, apart from
degenerate cases or possibly right at breaks, will then be negligible. Over the microstructure
length scale, the limiting process used in obtaining diffusion is likely to be of dubious validity,
and the diffusion might be better replaced by some other term, such as their original integral
(averaging) one. During the Study Group, the diffusion term was then neglected but we shall
return to this mechanism later.

The major difficulties with the model at this stage are the doubts over the form of the damage
accumulation rate, its size (to indicate the timescale over which fractures can form and grow),
and the size of stress for which it becomes significant (possibly likely to be related to the tensile
strength it).
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Simple model. As a simple illustration, a representation of the electrodes as a collection of
independent rods was considered. (This model might have some real significance for a short, or
fat, electrode). For the electrode to hang freely, the total force must vanish:

where (j(r, t) = stress, in the z or vertical direction, a distance r from the axis of the electrode,
taking this to be axially symmetric: R is the radius of the circle of cross-section. The net strain
in the electrode of length L, F(t), is related to a and the temperature change, the latter being
supposed here to be independent of z:

a IoL
dzF(t) = - - - 9(r) .

E a 1-w

Here E = elastic modulus and 9, the effect of the thermal expansion, is assumed given (this is
the only way in which temperature appears in this model).

Eliminating 9 and F,

IoL dz
(j=E(F+9)j -1-'a -w

F rR r dr rR r9dr _J 0 L dz + J 0 L dz - 0 ,a Io l-w a Io l-w

gives a law for the increase in damage:

Some simulations, for problems with no z dependence, are shown in Figs. 1 - 4. Here all constants
were taken as unity, g(8) = max(8, 0), the material to be initially pristine (w(r,O) = 0 for all
r), and 9 = r (so thermal contraction is largest at the outside). It can be seen that a wave of
increasing damage spreads from where 9 (thermal contraction) is greatest.

(One defect in this model is that although damage localised near r = ro, z = Zo leads, through
the decrease in stress carried around ra, to damage increasing for other values of r, this increase
is not concentrated near ra, zoo To get this effect, diffusivity of damage might be restored.)

Two dimensions: elasticity and damage. As in classical two-dimensional elasticity, it is
convenient to employ a stress function A, such that

0"11 = stress in x direction = 82A

}~2 ,

0"22 = stress in y direction = 8 A (1)
~x2 ,

0"12 = 0"21 = shear stress 8 A-8x'8y ,

ensuring that the momentum equations hold (with negligible inertia).
Taking, for simplicity, elastic moduli to proportional to (1 - w),

[ (Du DU')]a; = (1 - w) A(\7 'U)Oi' + J.L _t + _J
J J OXj OXi

(2)
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Figure 1: Damage w against radius at times 1, 2, 3, ..., 10, 15, 20, 25, 30.

for u = (UI,U2) = (u,v) = displacement, Xl = x, X2 = Y, Oij = 1 for i = i, Oij = 1 for i t= j. The
momentum equations, (1), and elastic constitutive laws (2) are coupled with an equation for the
accumulation of damage:

8w (0"11 + 0"22)-=g .
8t 1- w

(During the Study Group, only the trace of the stress, 0"11 + 0"22, was considered as a possibly
relevant stress invariant; the determinant might possibly be used as well or instead.) Eliminating
U and v, and assuming that wand \73A are small, gives

A + 2p, 4 1 (\72W\72 A 1 (82w (82 A 82 A)-.,..--\7 A + + - - - - -
/-L( A + /-L) (1 - w) A + p, P, 8x2 8x2 8y2

82w (82A 82A) 82w 82A)) 2 3+ 8y2 8y2 - 8x2 + 4 8x8y 8x8y = O(w , wl\7 AI)·

Looking for a simple perturbation solution,

A f"V x2/2 + Al + ... , w ~ 1,

and taking g(3) f"V 3- 1 for 3 ---t 1+, gives

(A+2/-L)\74AI+/-L\72w+(A+p,) (~:~ - ~:~) =0,

to leading order, i.e.

(3)

(4)



omega(l)

1.0

~

/
/

/
/
/
/
I
I

~ ,

l-omega(1) I

0.9

O.B

0.7

_ 0.6--•••~ 0.5
E
o 0.4

0.3

0.2

0.1

0.0

o 15 255 10 20 30

time

Figure 2: Plot of w at radius r = 1 against time.

with aw 2
at = w + \7 Al' (5)

Ideally, (4) and (5) should be solved subject to appropriate boundary conditions for Al (probably
growth conditions, if this analysis is thought of as applying to some local problem). Three simple
types of solution are

(a) sinusoidal:

w = &{ei(ax+f3Y)+rt}, \72A _ & {A{32 / (A + 2",,) - a2
i(ax+f3y)+yt}

1 - a2 + {32 e ,

{32 ( A)
1= a2 + {32 1 + A2 + 2"" > 0;

(b) no x dependence:

(e) no y dependence:

[J4Al a2w aw 02 Al OSAl
ax4 - - ax2' at = ax2 + w so &tax4 = 0 .

These cases all indicate linear instability and increase of damage.
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Figure 3: Plot of damage penetration front (interface between w = 0 and w > 0) against time.

Special Cases.

(1) Reduction to the one-dimensional model

Taking a two-dimensional problem, with the material occupying a region [z] < L, Iyl < h,
hi L = e « 1, and taking stress-free boundary conditions on the sides, 0'12 = 0'21 = 0 on y = ±h.
Displacement and stresses could be sought as power series in c. For instance, the displacement in
the x direction is given in terms of

U f'V Uo + €2U1 + ... for e -+ 0 .

Substituting such an expression into the two-dimensional equations, and using the boundary
conditions (which may be regarded as compatability conditions) eventually yields

Uo = uo(x, t) (the leading term for x displacement),

A 8uo
Vo = - -y

A + 2f.t 8x (the leading term for y displacement),

82 ~o = (1 _ wo) 4f.t (A + f.t) 8uo,
8y2 A + 2f.t 8x

and (to get 0'12 = - g;ty = 0 on the boundaries),

!... ((1 - w) 8uo) = O.
8x 8x
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Figure 4: Three-dimensional plot of damage against position (radius) and time.

This means that, to leading order,

and the Barenblatt & Prostokishin model is recovered.

(2) Cracks

Geometry with the y length scale much less than the x scale (and the zone) might also be
relevant to both the initiation and extension of fractures. This was not taken further during the
Study Group but it was speculated that crack-like travelling-wave solutions might (see 4 below)
be related to the "Fictitious-Crack Model" (Hillerborg, Hillerborg et al.).

A situation like in Fig. 5 could be envisaged: on the crack (say y = 0, x < Vt) the material
is broken: w == 1. Near the crack tip there is fracturing: w = 0(1) and * = 0(1) for [y[ « 1,
Ix - Vtl « 1 because (J' is large here. Near the crack but away from tip the material is damaged
but not subject to further damage: w = 0(1) but ~ « 1 for Iyl « 1, Vt - x = 0(1) due to the
release of stress from the neighbouring break on y = 0.

(S) Radial symmetry in two dimensions

With displacements, u, only in the radial, r , direction, a radially symmetric stress function
A = A(r, t) and damage w = w(r, t) satisfy

loA
(J"T = radial stress = - -,-,

T or
02A

(J'f)f) = hoop stress = or2 ' (J'r8 = shear stress = 0 ,
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ou loA 02A (02 A v 0A)
E(l - w) or = ;: or - v or2 and E(l - w)u = r or2 -;: or '

(Timoshenko & Goodier) for Poisson's ratio v, with

ow ( 8
2
A + 18A )_-9 7JTT rOT

ot- 1-w '

again taking a damage-accumulation rate dependent on tr (er)I(1 - w). This has yet to be taken
further, except that solutions of approximately travelling-wave type were briefly considered: see
(4)·

(4) Travelling-waves and approximate travelling-waves

Two types of travelling-wave solutions are considered here: the first is planar and assumes
only small changes in the stress; the second is radial or axisymmetric and involves solving the
linear equations of stress. This second type of solution is perhaps of more interest in terms of
the hanging electrode, since failure is thought to begin inside the cylindrical electrode and spread
outward.

Considering first the planar solution, let us recall the Barenblatt & Prostokishin form of the
equation for damage propagation with 9(S) = S:

ow
et = q(w, er;T)

er
1-w

(6)

where again w(x, t) measures the damage at (x, t), and er represents the local stress. In the
undamaged, pristine material, er = ero. In Barenblatt & Prostokishin, ero was simply a constant
because their analysis was one-dimensional. For the present planar analysis, er(t) is a measure of
the local stress tensor at time t, and ero(t) is its value in the pristine material. So ero is assumed
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to be independent of position z, or at least, slowly varying, and we assume that <7 ~ <70. This is
certainly not the case near the region of failure (w = 1) where <7 '\t 0, but it is a basic description
of the interface between the pristine region (w == 0) and the damaged region (w > 0). Here one
would expect <70 to increase in time as the load is supported by a decreasing volume of material,
but to remain spatially uniform, at least to lowest order.

Now consider the case of a planar damage front moving into a pristine region (cf. Fig. 6). Let
,,,,,,,,,,,,

\

\

00>0 \

00-0

)-1,0-0) 0=0, c =o,

Planar Front

-V
Figure 6: Schematic of a damage front moving into the pristine region.

x be the coordinate perpendicular to the front, and let x = pet) be the position of the front, and
V (t) = p' (t), its velocity. Define ~ = x - p( t) to be the distance from the front at time t. We wish
to look for a solution w (e) of (6) which is valid at least near e = 0 (near the front). Since

aw
m(e(x, t)) = w'(e)( - Vet)) ,

the kinetic equation (6) then becomes

(1 - w)w'(O =
(To

V (7)

where as usual I indicates differentiation with respect to a single variable. In general (7) would
be difficult to solve since its right-hand side is some unknown (and perhaps complicated) function
of t. But it is reasonable to look for solutions where the stress (To and the velocity V grow at the
same rate (i.e., depend on time in the same way). In such cases, the right-hand side of (7) would
be independent of time, and it is possible to solve (7) and obtain an expression for the form of
the damage function w(x, t) near the front:

{

1-/1+2~0(X-P(t))
w(x,t) = V

x < pet)
(8)

x ~ pet)

(If the region where most of the damage occurs, i. e. the zone where (8) is important is small, it
is reasonable to regard this wave as quasi-steady so time variation of V can be neglected.)

The above calculation does not prove the existence of a planar travelling wave; rather it
suggests that it is possible for a damaged region (w > 0) to spread into a pristine region (w = 0)
at a speed V related to the rate at which damage accumulates ahead of the front. More precisely, it

12



indicates that such a situation is consistent with the damage-kinetics equation (6). Furthermore,
the representation for w given in (8) is valid only near the plane x = pet).

Now we turn our attention to the question ofaxisymmetric travelling waves moving outward
in the radial direction. Let A again be the stress function, and assume that both this stress
function and the damage are independent of the angle (): A = A(r, t) and w = w(r, t). Then by
definition, the relationship between the stress function and stress itself is, as before,

loA
<7rr = ;: or ' <7r(J = o.

Assuming that the numerator of the right-hand side of (6) can be interpreted as the trace of the
stress tensor, then this kinetic equation for damage, (6), becomes

ow () <7rr + <7(J(Jat = q W, <7 = 1_ w . (10)

Now suppose that the travelling wave is moving with constant speed V and is located at
r = Vt. Define e( = r - Vt to be the distance from the front where e ~ 1 implies that we are
near the front. From the equations of elasticity, one can then derive that

(11)

Here and in what follows, the symbol c; implies that only the lowest-order terms in e are consid-
ered. In addition, the present kinetics equation (10) can be written as

(12)

Combining (11) and (12), one obtains a system of two equations for A and w:

G(t)(l- w),

-G(t) ,

where G is independent of ( but may depend on t. It may be noted that this two-dimensional
travelling-wave solution differs markedly from the one-dimensional one, (7), with the factor (1-w)
disappearing, indicating the importance of the geometry.

5 Discussion and Further Work

(i) Damage production. One possible problem with the damage model of §4 is the prospect
of a conflict with measurement leading to the fracture energy. Elkem's experiments showed that
the energy involved in forming a macroscopic break is roughly proportional to the square of the
length. (Ideally, energy IX GFL2 for a length scale L. They actually find energy increases rather
more slowly, possibly due to damage near the points where forces are applied.) The sort of
damage model discussed in the previous section would be expected to lead to energy IX L3. It is
conceivable that the extension zone of a narrow damage zone might, with suitable laws for damage
accumulation (perhaps with Arrhenius or exporential dependence on stress), allow energy to be
like L2. (Given a rate-dependent damage accumulation, it might also be expected that the energy
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input to produce a break should depend on how the break is formed: larger pores and stresses -
faster fracture - should change GF.)

Of course to make any concrete prediction for this damage model, it is necessary to know q:
what components of C7 it depends on; its qualitative form (quadratic, exponential, ...); its size;
sizes of C7 for which ~ is significant. (Regarding the first point, it should also be noted that
the damage itself might not be isotropic, Kachanov (1980).) A tentative, but simple, experiment
might involve stretching a uniform bar, with either controlled tension or controlled stretch. For
example, assuming that q = g(C7/(l - w)), C7= E(l - w)t;, t; = given strain = C, (elastic
modulus E = constant),

OWat = g(CE)

and, assuming an initially pristine material,

w = g(CE)t, C7= CE(l - g(CE)t).

This could be used to determine the function g. Acoustic measurements could be carried out
simultaneously to g,et an indication of the actual rate of damage accumulation (the distribution of
the sound levels from microfracture might give some extra information about the mechanisim of
fracture, as in geomechanics (Cox & Meredith); there could conceivably be some fractal structure).
Such a simple experiment is likely to be badly affected by any initial damage, unlike the experiment
used by Elkem. Taking C7 = constant and specified (as Barenblatt & Prostokishin; see also
Kachanov, 1961) with, say, a simple power-law damage accumulation rate,

0;: = g (1 ~ w) = (1~C7:)a

w = 1- ((1- wo(x)) - A(a + l)C7at)l/(a+1) ,

(a> 0, a 2: 0),

with wo = initial damage. For a pristine bar of length L, its extension is then

(14)

More generally

Rather than the inverse power law, Ul ex: W - t)-l/(a+1) for a break time t", given by (14), the
more general case, as (15), assuming that

Wo(x) ,....,a - b( x - xo) 2 .•. for x ~ Xo ,

with a = max{wo} > 0 and b » 0, gives Ul ex: (t* - t)-(1-a)/2(l+a) as t ~ t*- for a < 1 but Ul

bounded as t ~ t" - for a > 1. The special case, a = 1, is expected to give logarithimic growth
of the net extension.
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