
Data packet loss in a queue with limited
buffer space

Problem presented by

José Gil

Motorola Research

Problem statement

When channels with limited buffer space are shared by multiple bursty data
sources then some fraction of submitted packets is lost when the buffer
becomes full. Feedback signals enable the sources to reduce their burst sizes
when the buffer becomes congested. On the other hand, if there is plenty of
free space in the buffer then burst sizes are allowed to increase. Such systems
may be designed with a variety of queueing disciplines and packet discard
policies. The Study Group was asked to analyse the packet-loss process for
packet submission using either first-in-first-out or weighted fair queueing, and
for packet discard using either drop-tail or random early discard policies.

Study Group contributors

David Allwright (Smith Institute)
Paul Dellar (Imperial College London)

Robert Leese (Smith Institute)
Malwina Luczak (London School of Economics)

Steven Noble (Brunel University)
Domingo Salazar (University of Oxford)

Report prepared by

David Allwright (Smith Institute)

B-1

1 Introduction1

Outline: A system that occurs in several contexts in computer and data networks has
the generic form shown in Figure 1.

q u e u e d is c ip l in e

s o u rc e 1

s o u rc e N

.

.

.

Figure 1: Diagram of the system under consideration.

There are N sources sharing a single channel, and their access to this channel is
administered by a resource management system which has a limited buffer space. The
sources transmit packets in bursts, and in some circumstances (e.g. if the buffer is full)
some of the packets may be lost. The source receives an explicit feedback signal from
the system reporting the packet loss ratio for the burst. The size of the next burst
is determined by the source as a function of this packet loss ratio. The time between
sending a burst of packets and receiving the feedback packet loss signal is called the
round trip time. It is variable due to queuing within the resource management system
and channel variability. The elements of the resource management system are a service
discipline that schedules the packets, a buffer system that stores the packets waiting for
service, and a packet discard policy that discards incoming packets depending on the
buffer occupancy. The problem is to find the steady state distribution of the packet loss
ratios, and other information about the statistics of the distribution, e.g. the variance
of the packet loss distribution.

1.1 Sources

We shall be thinking of the number of sources N as being large: sometimes it may be
about 60–100, but in other circumstances up to 1,000. In practice the sources may be
of various kinds, and may for instance be part of some networking software. However,
for the purposes of this problem the sources are to be treated as essentially described by
the way they respond to packet loss.

There are two cases to be studied:

1This section combines the problem description circulated before the Study Group, the presentation
made on the opening day, and additional information provided later during the week.

B-2

(1) Case 1: each source switches ON and OFF randomly, with transition rates qn,ON

and qn,OFF, say, which depend on the source index n = 1, 2, . . . , N . The sources
switch ON and OFF independently of each other, i.e. there is no ‘clumping’.

(2) Case 2: each source is always ON.

When a source is ON, it submits a sequence of bursts to the queuing system. Each
burst consists of a number of packets. (Internally, a packet may be of 576–1,500 bytes,
and is divided up into blocks of 20–50 bytes, but we do not consider that structure here,
thinking instead of the packet as a single entity. In GPRS, a packet may typically take
about one second to transmit.) If the source is labelled X we shall denote the size of
the j-th burst (i.e. the number of packets submitted) by Xs

j . Some of those packets may
be discarded by the resource management system, so the number of packets actually
transmitted may be less, and we denote it by Xj. When they have been successfully
transmitted by the channel, a feedback signal is sent to source X that Xj packets were
successfully transmitted, so the packet loss ratio is

p = 1 − Xj

Xs
j

. (1)

The number of packets submitted in the next burst is then

Xs
j+1 = min

(
f(1 − Xs

j /X
s
j+1), 2Xj

)
, (2)

where

f(p) =
b√

(b2 − 1)pV + 1
, rounded to an integer. (3)

If there is no packet loss, p = 0 and f(p) = b, which is the maximum number of packets
in a burst, typically taken in the range 10–64. As the packet loss p increases, f(p)
decreases: this is the control system by which the sources temper the demand they make
on the system in accordance with the response they obtain. When all packets are lost,
p = 1 and f(p) = 1. The parameter V (which will take different values Vn for different
sources) controls how much the source responds to packet loss: a source with a high
value of V still prefers to submit larger bursts even when p falls, but a source with low
V submits smaller bursts more readily. In other words, larger values of V represent
more aggressive behaviour, and smaller values more moderate. (This is different from
other kinds of aggressive behaviour in congested networks, e.g. sending multiple bursts
to try to grab more channels — in our case aggressive sources do not do this, but simply
continue to maintain the submitted burst size.) The typical range of V is 0.5 ≤ V ≤ 2,
and one could initially consider a situation where sources were of two different types, Na

sources with V = Va, and Nb sources with V = Vb. The graphs in Figure 2 show the
function f(p) for b = 10, with V = 0.5 or V = 2, plotting both the continuous function
and its value rounded to the nearest integer. It is perhaps worth noting that there is

B-3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

10

Figure 2: The function (3) with b = 10, for V = 2 (upper graphs)
and for V = 0.5 (lower).

always a rapid initial fall in f(p). In fact if p is not 0 then it must be at least 1/b (in
the case where b packets were submitted and only 1 lost) and then f falls from b to

f(1/b) ≈




b/
√

2 if V = 2√
b if V = 1

b1/4 if V = 0.5.

(4)

If p = 1, so all packets of a burst are lost, then source X submits its next burst (which
will be a single packet) after a certain time-out interval T0. This T0 = 3RTT is three
times the average round trip time (RTT) of previous transmissions, typically calculated
by RTT new = 0.9 ∗RTT old + 0.1 ∗RTT . It should be noted that the transmission times
dominate the time spent in the process, so that we shall always consider the time spent
loading packets into the buffer, computing the burst size, etc., to be negligible.

1.2 Packet discard policies

The total buffer space available will be denoted by B, and in practice may be of order
megabytes but will depend on the application. We are concerned with what happens
when this buffer fills up, and there are two packet discard policies that might be in
operation:

(1) Drop-tail: this simply means that if a packet arrives when the buffer is full then
it, and any subsequent packets of the same burst, are dropped.

B-4

(2) Random Early Discard (RED): If the buffer occupancy exceeds some threshold
Omin, (Omin < B), then arriving packets are dropped with a probability varying
linearly between 0 at Omin and 1 at B, different packets being independent.

The graphs of packet drop probability against buffer occupancy in these two cases are
illustrated in Figure 3.

b u f f e r o c c u p a n c y

pa
ck

et
 d

ro
p

pr
ob

ab
ilit

y

1

d r o p - t a i l

b u f f e r o c c u p a n c y
pa

cke
t d

rop
 pr

ob
ab

ility

1

r a n d o m e a r l y d i s c a r d

Figure 3: Packet loss probability for the two packet discard policies.

1.3 Service disciplines

There are three queuing disciplines of interest:

(1) First-in-first-out (FIFO). This is the simplest case, in which all packets form a
single queue, occupying the whole buffer of length B packets, and are dealt with
in order of arrival.

(2) Weighted Fair Queuing (WFQ). Here, the buffer space is divided up into a number
of smaller buffers in which separate queues operate allocated to specific services or
sources, and there are various ways in which this can be done.

In one variant, which we call WFQ1 (referred to as Quality of Service) there are 4
queues, and each source is allocated to a particular queue, with the FIFO system
applying to each queue individually. Each queue is assigned one of four weights w1,
w2, w3, w4. Packets are serviced one from each queue in turn, in a fixed cyclic order
(round robin fashion) skipping any queues that are empty, and with an allocation
of serving time proportional to the weights. (There are various ways in which this
can be done. For instance, suppose the system is deciding which queue to take the
m-th packet from, and the previous m − 1 packets have dealt with mi from the
i-th queue. Then choosing i to maximize wim − mi and taking the m-th packet
from that queue will achieve the result that as m → ∞, mi/m → wi. There are
complications if some of the queues are empty for parts of the time, but we shall
not pursue this point.)

B-5

In another variant, which we call WFQ2 (referred to as Best Effort), the buffer
is divided into M buffers, each of size B′ = B/M , but each of these buffers just
serves for a single source. If N > M then while the M buffers are holding packets
for M different sources, the remaining N −M sources will experience 100% packet
loss, reducing their bursts to just one packet. If N ≤ M then all sources get buffer
space. A source will overflow its own buffer when the burst size becomes larger
than B′. The queues are serviced in a round robin fashion.

In a third variant, WFQ3, the M buffers of WFQ2 are dealt with according to
some weights wi rather than equally.

(3) Earliest Service Time (EST). This aims to give priority to flows with the least
service time: the scheduler knows the average service time for packets from each
source, and gives some weighted priority to those packets that can be transmitted
fastest. (But while a packet is being served, no preemption occurs if a new incoming
packet has shorter service time.)

The queueing patterns in the first two cases are illustrated in Figure 4.

FIFO

ro u n d ro b in

Figure 4: FIFO and round robin queueing systems.

1.4 The channel

The channel is of limited capacity, and is time-variable, making the service time for a
packet variable, in a way that can be treated as random. The way that its capacity
is used by the different sources is governed by the service discipline in use. Possible
assumptions about the packet service time could be

(1) exponential service time;

(2) general service time (as in a M/G/1 queuing system).

B-6

1.5 Problems for the Study Group

The combinations of cases, in order of most interest, are

(1) Drop-tail and FIFO

(2) Drop-tail and Weighted Fair Queuing

(3) Random Early Discard and FIFO

(4) Random Early Discard and Weighted Fair Queuing.

2 FIFO queue with drop-tail discard policy

We begin the study by considering what happens in the case of a single queue, operating
a FIFO queuing policy, and with a drop-tail discard policy. We initially consider the case
in which there are N sources, all ON, and suppose that each source has some packets in
the queue. For ease of illustration we shall consider N = 3, and label the sources as X, Y
and Z, and suppose that at some stage the queue contains numbers of packets Zj, Yj, Xj

and the Xj packets are about to be dealt with. After they have been processed, source
X will receive the signal and will submit its next burst of Xs

j+1 packets. If they can all
be placed in the remaining space in the buffer, none are lost, but if not then the buffer
will just be filled up to its capacity B and the remaining packets lost. Thus the number
of X-packets that enter the queue is

Xj+1 = min(Xs
j+1, B − Yj − Zj). (5)

The queue then contains Xj+1, Zj, Yj and the Yj packets are dealt with. On completion
of them, source Y submits Y s

j+1 packets, and

Yj+1 = min(Y s
j+1, B − Zj − Xj+1) (6)

of them enter the buffer, which then contains Yj+1, Xj+1, Zj. After transmission of the
Zj packets, source Z submits Zs

j+1 packets,

Zj+1 = min(Zs
j+1, B − Xj+1 − Yj+1) (7)

of them enter the buffer, and we are back to the initial point with j replaced by j + 1.

This has the consequence that the sequence of burst sizes is deterministic, governed by
(5)–(7) and (2) for each source. The mapping of this deterministic sequence into physical
time will be random of course, depending on the service times of the packets, but the
sources will continue to transmit in the same cyclic order X, Y , Z, X etc, with submitted
and actual burst sizes governed by these recurrence relations. No source can get pushed
out by this process, since if Xj ≥ 1 then Xs

j+1 ≥ 1 and B−Yj−Zj ≥ Xj ≥ 1, so (5) shows
Xj+1 ≥ 1. Furthermore, if at any point in the cycle a source submits a maximum burst,
of b packets, and they are all transmitted successfully, i.e. Xj = Xs

j = b, then at the

B-7

next stage it will also submit Xs
j+1 = b according to (2) and since B−Yj −Zj ≥ Xj = b,

equation (5) ensures that Xj+1 = b also, so that source continues to send maximum
bursts successfully.

This discrete system can be simulated easily of course, and is certain to settle into a
cycle. Simulations with N = 3 sources, buffer size B = 20, and maximum burst size
b = 10 show that

(1) If each Vi = 2 then a cycle is reached in which the first source has maximum burst
size, and the other 2 sources share the remaining resource;

(2) If two of the Vi are 2 and the other is 0.5, then a cycle is reached in which the first
source with V = 2 has maximum burst size;

(3) If just one of the Vi is 2 and the others are 0.5 then the cycle gives that (more
aggressive) source the maximum burst size;

(4) If each source has V = 0.5, then a cycle is reached in which no source has maximum
burst size, and the buffer is, in effect, underused.

2.1 Sources entering and leaving

When a source leaves a cycle of the kind described above, the immediate benefit is
obtained by the source that follows it in order, and the system will settle into a new
cycle in which that source obtains a greater share of the service.

More complicated is what happens when a new source, say W , switches ON and tries
to join the system. It will initially submit a 1-packet burst, and if that arrives when
the buffer is full, it will be discarded and W will wait for the time-out interval T0

before trying again. Since that time-out interval is not synchronized with the packet
transmission process, W will eventually (assuming N ≤ B) send its packet at a time
when there is space in the buffer (because a burst of 2 or more packets is part way
through transmission) and so W will enter the system at that point and the system will
then settle to a deterministic cycle of 4 sources.

If the rates at which sources switch between ON and OFF are low compared with the
rate at which the deterministic system reaches its steady cycle, then we can think of the
system as simply moving between these cycles in response to the changing number and
character of the sources. However, if the ON/OFF switching rates are comparable with
the response rate of the deterministic system, then to handle it properly we would need
to have a more complicated Markov chain with quite a large state space. For instance,
suppose we take only N = 2 sources, a buffer size B = 3, and maximum burst size b = 2.
Then the items that may be in the queue from X are: a 2-packet burst, a 1-packet burst
that is going to be followed by a 2-packet burst, and a 1-packet burst that is going to be
followed by a 1-packet burst. Denote these by X2, X1, X ′

1, and similarly for Y . Then
the states of the queue at the point where a burst has just finished transmission can be:
empty, X2, X1, X ′

1, X2Y1, X2Y
′
1 , X1Y2, X1Y1, X1Y

′
1 , X ′

1Y2, or any of these last 9 states

B-8

with X and Y reversed, making a total of 19 states of the queue. Each of these has to be
combined with the states of the two sources X and Y being either ON or OFF, making
a total of 76 states for the system. We did not attempt to analyse this kind of situation
further.

3 Weighted Fair Queuing (WFQ) with drop-tail

There are two versions of WFQ that we may consider. In the first version (WFQ1) there
are 4 queues, each for a different traffic class. Each source sends its bursts to a particular
queue, and each queue is a FIFO buffer of size B/4, served at a rate wj times the total
rate. In this case, each of the buffers individually functions in the manner described
earlier, and we shall not discuss this case further.

In the second version (WFQ2), there is a single queue for each source, M queues available,
and the number of sources is N > M . Each of the N − M waiting sources will send
1-packet bursts until it gets a queue. This will happen only if it sends its packet while
one of the existing queues is empty because it is just transmitting the last packet of the
previous burst: we refer to this as stealing the queue. Once a source steals a queue in this
way, it will next send a 2-packet burst, then 4, etc, until either it reaches its maximum
burst size b (when it will continue to send bursts of that size), or its queue is stolen in
turn by one of the waiting sources.

This could be set up as a continuous-time Markov chain, but will be very complicated.
Instead we shall set up a simpler approximate model, thinking of N and M as large.
Essentially the approximations consist of

(1) treating the retries from the waiting sources as a Poisson process of rate λ = 1/T0;

(2) treating the packet service times as exponential with parameter µ;

(3) replacing the Round Robin by a server that picks one of the M queues at random
to serve.

These simplifications will enable the model to capture some aspects of the behaviour, but
there will be others that are missed. For instance, in practice it is found that the timings
are such that if consecutive queues contain the last packets of two sources X and Y , and
if X’s queue is stolen by a waiting source W , then there is a strong tendency for X to
steal Y ’s queue when Y ’s last packet is served. A further aspect is that an aggressive
source (high V) will be sending larger bursts, and therefore tend to have higher RTT,
and therefore a longer time-out interval T0 than a more moderate source. This means
that when it is waiting it is not retrying as often and so is proportionately less likely to
be able to steal a queue.

To model the simplified version of the system, suppose that in a steady state it has m1

queues serving 1-packet bursts, m2 queues serving 2-packet bursts, etc. Then consider
how one particular source moves around in this system, and in particular view it in

B-9

discrete time at the end of each “event”: these events are either packet-services, or retries
from the waiting sources. The total rate of events we shall denote by Λ = (N −M)λ+µ.
We describe the source’s state as 0 (waiting), or 1, 2, 4, 8, etc, according to whether
its current burst is of 1, 2, 4, 8, etc packets. Then the transition probability p01 from
waiting to having a 1-packet burst in the system is

p01 =
λ

Λ

m1 + m2/2 + m4/4 + m8/8 + . . .

M
=

λ

Λ

(
∑

mr/r)

M
, (8)

since the probability that the next event is a retry by source X is λ/Λ, and when this
retry happens the server is dealing with one of the M queues. If it is dealing with a
1-packet burst (probability m1/M) then source X gets in; if it is dealing with a 2-packet
burst (probability m2/M) then X gets in only if it is handling the second packet of that
burst (probability 1/2), etc, giving the second factor in (8). From state 1, the rate of
transition back to 0 is

p10 =
(N − M)λ

Λ
.

1

M
, (9)

since the probability that the next event is a retry by any of the waiting sources is
(N − M)λ/Λ, and the probability that this retry takes place when X’s queue is being
served is 1/M . More hopefully (from X’s point of view) the rate of transition from 1 to
2 is

p12 =
µ

Λ
.

1

M
, (10)

since the first factor is the probability that the next event is a packet service, and the
second factor is the probability that it is X’s queue that is served. From state 2, the
transition rates are

p20 =
(N − M)λ

Λ
.

1

M
.
1

2
, p24 =

µ

Λ
.

1

M
.
1

2
, (11)

where in each case we have an additional factor of 1/2 to account for the probability
that the event occurs during service of the second packet of the burst. The transition
rates from 4, 8, etc will similarly have factors 1/4, 1/8, etc. (For each state i there
is of course a probability of remaining in that state pii = 1 − ∑

j �=i pij.) The steady
state distribution with mi buffers allocated to burst size i is then determined by solving
mi

∑
j �=i pij =

∑
j �=i mjpji, representing that fact that the rate of flow of probability out

of state i must be equal to the rate of flow into it. If say b = 8 then these equations are

m1(p10 + p12) = m0p01, (12)

m2(p20 + p24) = m1p12, (13)

m4(p40 + p48) = m2p24, (14)

m8p80 = m4p48. (15)

(The corresponding equation for state 0 could be written down but is just equivalent to
the sum of these equations.) Together these imply that

m8

m4

=
p48

p80

=
2µ

(N − M)λ
,

m4

m2

=
p24

p40 + p48

=
2µ

Λ
,

m2

m1

=
2µ

Λ
,

m1

m0

=
λ

Λ

(∑
mr/r

)
. (16)

B-10

Hence we find

M = m1 + m2 + m4 + m8 = m1

(
1 +

(
2µ

Λ

)
+

(
2µ

Λ

)2

+

(
2µ

Λ

)2
2µ

(N − M)λ

)
, (17)

from which all the required quantities can be found, and the final equation of (16) gives
m0 = N − M as it should.

4 Random Early Discard (RED)

In the case of RED, packets arriving at the buffer are placed in the buffer until the
occupancy j reaches Omin. When j ≥ Omin, an arriving packet is dropped with
probability

qj =

(
j − Omin

B − Omin

)
= (j − Omin)∆, (Omin ≤ j ≤ B), (18)

where we shall define

∆ =
1

B − Omin

. (19)

The packet is dropped with this probability independently of what happened to previous
packets in this or previous bursts.

To form a Markov chain of this situation we would like to know the transition
probabilities from a state where the occupancy is j and a k-packet burst arrives
to the state where the burst has been processed by RED and the occupancy is j′

(j ≤ j′ ≤ min(j + k,B)), so j + k− j′ packets have been discarded. The complication in
dealing with this is that the probability of acceptance of a particular packet depends on
the number of acceptances of previous packets. We shall deal with this problem later,
but first we address the simpler question of the expected value of j′.

4.1 Expected number of packets accepted

We consider the situation where the occupancy is j ≥ Omin and a burst of k packets
arrives. The first packet is accepted with probability pj = 1 − qj, varying with j as
illustrated in Figure 4.1. If the first packet is accepted then the second packet is accepted
with the smaller probability pj+1 = pj −∆; but if the first packet was discarded then the
second packet is accepted with the same probability pj that applied to the first packet.
Counting the different combinations we find that

a1 = Pr(1st packet accepted) = pj, (20)

a2 = Pr(2nd packet accepted) = pjpj+1 + (1 − pj)pj, (21)

a3 = Pr(3rd packet accepted) = pjpj+1pj+2 + pj(1 − pj+1)pj+1 + (22)

(1 − pj)pjpj+1 + (1 − pj)
2pj,

B-11

1

0

Acceptance probability

Buffer occupancy

0 Omin B

Figure 5: packet acceptance probability as a function of occupancy
in the Random Early Discard (RED) case.

and so on. In general the probability ak that the k-th packet is accepted will be a sum
of 2k−1 terms, and the expected number of packets accepted out of the k-packet burst
will be a1 + a2 + . . . + ak.

We initially left these unpromising-looking expressions and instead considered what
would happen if the burst size is large and we regard the packets as a continuum, so
that a differential equation approach can be used2. The expected number of packets
accepted, X, out of a number submitted Xs then obeys

dX

dXs
= p =




1 if j + X ≤ Omin

B − (j + X)

B − Omin

if j + X ≥ Omin.
(23)

With X = 0 at Xs = 0 this can easily be solved and we find the value of X at Xs = k,
and then the final occupancy of the buffer is

j′ =




j + k if j + k ≤ Omin

Omin + (B − Omin) (1 − exp (−(j + k − Omin)∆)) if j ≤ Omin ≤ j + k

j + (B − j) (1 − exp(−k∆)) if j ≥ Omin.

(24)

This represents the way the expected number of packets accepted approaches B
exponentially as the number of packets submitted increases without limit.

Having handled this continuum limit successfully3 we then found we could also deal
with the exact expressions (20)–(22) for the discrete case. We let fk(x1, x2, . . . , xk) be

2following Malwina’s remark early in the week: “If you can’t do a differential equation, you can’t do
anything else either.”

3thereby overcoming the hurdle imposed by Malwina’s remark

B-12

the probability that the k-th packet is accepted when xj is the probability of acceptance
of a packet after j − 1 previous acceptances. So for instance

f1(x1) = x1, (25)

f2(x1, x2) = x1x2 + (1 − x1)x1, (26)

and the the quantities we introduced earlier are ak = fk(pj, pj+1, . . . , pj+k−1). Then we
can obtain a recurrence relation for the fk by considering what happens to the first
packet: either it is accepted (with probability x1) in which case the remaining k − 1
packets face the acceptance probability sequence x2, x3, . . . , xk; or the first packet is
discarded (with probability 1 − x1) in which case the remaining k − 1 packets face the
acceptance probability sequence x1, x2, . . . , xk−1. So

fk(x1, x2, . . . , xk) = x1fk−1(x2, x3, . . . , xk) + (1 − x1)fk−1(x1, x2, . . . , xk−1). (27)

Although this does not simplify in general, we are always interested in the case where
the xj decrease linearly with j so xj = A− j∆ for some constant A. In this case we shall
show that

fk(x1, x2, . . . , xk) = x1(1 − ∆)k−1. (28)

For when k = 1 this is just (25) and for k > 1 we proceed by induction, so that under
the inductive hypothesis the right-hand-side of (27) is

x1x2(1−∆)k−2 +(1−x1)x1(1−∆)k−2 = x1(1−x1 +x2)(1−∆)k−2 = x1(1−∆)k−1, (29)

as required.

An alternative derivation of this result is to use indicator variables

Yj =

{
1 if the j-th packet is accepted

0 if it is discarded.
(30)

Then the dependence of Yj on the previous acceptances Y1, Y2, . . . , Yj−1 is

Yj =

{
1 with probability pY1+Y2+...+Yj−1+1

0 otherwise,
(31)

i.e. Yj = 1 with probability A − (Y1 + Y2 + . . . + Yj−1 + 1)∆. Thus the conditional
expectation of Yj is

Ex(Yj|Y1, Y2, . . . , Yj−1) = A − (Y1 + Y2 + . . . + Yj−1 + 1)∆. (32)

So aj, which is the unconditional probability of acceptance of the j-th packet, i.e. the
unconditional expectation of Yj, is

aj = Ex(Yj) = A − (Ex(Y1) + Ex(Y2) + . . . + Ex(Yj−1) + 1)∆

= A − (a1 + a2 + . . . + aj−1 + 1)∆. (33)

Applying this recurrence for aj with j replaced by j − 1 we see we can write it as
aj = aj−1 − aj−1∆, so aj = a1(1 − ∆)j−1 and we obtain the same result as previously.

B-13

We notice that it depends crucially on the right-hand-side of (32) being linear in the Yj′

(j′ < j) so that we can take the expectation regardless of the correlations between the
Yj′ . This linearity in turn arises from the linear dependence of the discard probability
on buffer occupancy.

Combining the results we have

Ex(j′|j, k) =




j + k if j + k ≤ Omin

Omin + (B − Omin)
(
1 − (1 − ∆)k+j−Omin

)
if j ≤ Omin ≤ j + k

j + (B − j)
(
1 − (1 − ∆)k

)
if j ≥ Omin.

(34)

Furthermore, when we modify these results to represent the continuum limit, by replacing
(1−∆)k by exp(−∆k), they agree exactly with those of the differential equation approach.
We have given this variety of approaches to illustrate different methods, some of which
may generalise more easily than others to future variants of the problem.

4.2 Transition probabilities in detail

We now return to the question that we posed before considering the expected number
of packets accepted, namely what are the transition probabilities, and in particular if
the occupancy is j ≥ Omin and k packets arrive, what is the transition probability to
occupancy j′ (j ≤ j′ ≤ min(j + k,B)). We wish to know the full distribution, of which
(34) is the mean.

We shall show that this is

p(j + l|j, k) = pjpj+1 · · · pj+l−1∆
k−lM(k, J + l, l)/l!, (35)

where J = j − Omin and M(k, r, l) is the number of mappings of k points into r points
that cover a specified l-element subset. Explicitly, using the principle of inclusion and
exclusion, we can write

M(k, r, l) =
l∑

s=0

(−1)s

(
l

s

)
(r − s)k (36)

= rk −
(

l

1

)
(r − 1)k +

(
l

2

)
(r − 2)k − . . . + (−1)l(r − l)k. (37)

Since M(k, r, 0) = rk and M(k, r, k) = k!, (35) certainly gives the correct results
p(j|j, k) = (J∆)k = (1 − pj)

k for no acceptances and p(j + k|j, k) = pjpj+1 · · · pj+l−1

for k acceptances. To show the result in full, consider the probability that l packets are
accepted out of k submitted: either l − 1 are accepted out of the first k − 1 and then
the final packet is accepted, or l are accepted out of the first k − 1 and the final packet
is rejected. So

p(j + l|j, k) = p(j + l − 1|j, k − 1)pj+l−1 + p(j + l|j, k − 1)(1 − pj+l). (38)

B-14

Here the first term is only present if k ≥ 1 and the second only if l ≤ k−1. Substituting
(35) into this recurrence relation we find we need to check that

M(k, r, l) = lM(k − 1, r − 1, l − 1) + rM(k − 1, r, l). (39)

However, this certainly holds since maps counted on the left can be divided up into those
where the first k− 1 points cover only some l− 1 of the specified points and those where
they already cover all l of the specified points. In the first case there are l choices of
which of the l points is not covered, and then M(k − 1, r − 1, l − 1) ways in which the
k−1 points can cover those l−1 specified points but not the omitted one. In the second
case there are M(k − 1, r, l) ways in which the first k − 1 points can already cover the l
specified points, and then the k-th point can map onto any of the r points in the target
set.

B-15

