
Study Group Report
Cond uctor Mounted Residual Current Detector

EA Technology
S. Smith

S.J. Chapman
Mathematical Institute,

24-29 St. Giles,
Oxford OXl 3LB, U.K.

June 2,1993

1 Introduction

Overhead power transmission lines consist of 3 cables carrying 3-phase current. The sum of

the currents in the three cables, known as the residual current, should therefore be zero at

all times. A non-zero residual current is a good indication that there is a fault somewhere

down the line (for example, one of the cables may have earthed).

The problem brought to the study group concerned the measurement of the residual

current by means of a detector mounted on the centre cable. The detector would comprise a

number of probes, each of which could sample the magnetic field (in a particular direction)

due to the current flowing in the cables, mounted on arms attached to a torroidal search coil

which would be mounted around the centre cable (see fig. 1). The torroidal search coil would

be able to detect accurately the magnetic field due to the current flowing in the central wire,

and hence this current, which we shall denote by 13, can be taken to be known. The readings

from the probes would then be used to calculate the remaining currents 11 and 12.

The problem to be addressed was of the effect of the wind .. The detector would be

mounted near to a support pole, so that the wires themselves would not move a significant
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amount in the wind. However, the detector itself ma.y blow in the wind, resulting in a.
rotation of the whole apparatus about the centre wire. This would then lead to. an erroneous

measurement, and the detector would detect a fault when there was none. Thus the .problem

was to find a configuration of probes, and an algorithm for calculating the residual current

from their measurements, which is robust with respect to rotations of the whole configuration

about the centre wire.

2 Formulation

Figure 2 shows the three cables and a general configuration of four probes attached to the

centre cable, which has rotated through an angle 8 from it's rest position. Each probe

has a particular orientation, and measures the magnetic flux threading it (with the arrow

indicating the positive direction). Each wire generates a magnetic field

t.
-e~,
r

where I, is the current down the wire, r,4> are polar coordinates centred on the wire, and

e4> is the unit vector in the azimuthal direction. If we denote by Bi the reading of the ith

probe, we therefore have

B1
cos(01 - f31 - /11 + 0) I cos(01 - {31+ /21 + 8) I cos f31 I (1)= 1- 2+-- 3,

Xu X21 T1

B2 = cos(02 - {32+ /12 - 0) 11 _ cos(02 - f32 - ;22 - 8) I2 _ cos f32
13

, (2)
X12 X22 T2

B3
cos(03 - f33 - ;13 - 8) 1 cos(a3 - f33 + ;23 - 8) 1 cos f33 I

(3)= 1- 2+-- 3,
X13 X23 r3

B4 = cos(a4 - {34+ /14 + 0) 11 _ cos(a4 - {34- ;24 + 8) 12 _ cos f34 I3, (4)
Xl4 X24 r4

r·
SIn;ij = u: sin(aj ± 8), (5)

Xij

cos ;ij
d + (-1)i+iri cos(aj ± 8)

(6)= Xii

Xij = JcP + r; + 2( _1)i+id rj cos(aj ± 0), (7)
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where the plus sign is taken for j = 1, 4, and the minus sign is taken for j = 2, 3. In

principle we have only three unknowns, and can therefore solve the system completely with

only three probes in any configuration. However, in practice, it may not be so easy to solve

for the angle O. The problem is then to find a configuration of probes in which the angle 0

can be easily approximated.

Things are much simplified if we consider four probes, in two pairs, such that the probes

in each pair are equal and opposite. This corresponds to choosing

/34 = /31,

and implies that

114 = 1211 124 = Ill, 113 = 122,

Then, subtracting equation (4) from equation (1), and equation (3) from equation (2) we

find

B, - B4 (11 + 12) (cos(a1 - /31 -Ill + 9) _ cos(al - /31+ 121 + 9)). + 2COS'/31h~8)
XlI X21 r1

B2 _ B3 = (11 + 12) (cos(a2 - /32+ 112 - 0) _ cos(a2 - /32 -/22 - 0)) _ 2COS/32hl..9)
X12 x22 r2

We can eliminate (11 + 12) to obtain the following equation for 0:

(
cos(al - /31 - III + 9) _ cos(al - /31 + /21 + 9)) =

Xll X2l

(
Bl - B4 - 2(COs(/3d/rd13) (cos(a2 - /32+ 112 - 0) _ cos(a2 - /32 -,22 - 0))(10)
B2 - B3 + 2( COs(/32)/r2)13 X12 X22

Here we see the simplification introduced by our choice of geometry: 9 is dependent only on

the ratio
Bl - B4 - 2(cos(/3d/rdI3
B2 - B3 + 2(COs(/32)/r2)h'

which we shall henceforth call A. In principle the procedure is now to solve (10) for e as a

function of A, and substitute this into either (8) or (9) to give (I1 + 12) as a function of Bl,
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B2, B3, B. and 13. In practice however, (l0) is hard to solve in closed form. We also have

the constraint that the resulting function (I1 + I2)(Bt, B2' B3, B4' 13) must be such that it

can be evaluated easily by the device.

We simplify our notation by setting

_ (cos( 0:'1- f31 - /'11+ 9) _ cos(0:'1- f31 + /'21 + 9)) ,
Xll X21

(
COS( 0:'2- f32 + /'12 - 9) _ cos(0:'2- f32 - /'22 - 9)) ,

X12 X22

(11)

12(9) (12)

so that

(13)

(14)

and
). = 11(8)

12(8)'
Inverting this equation gives ()= 8(>.). Substituting into (14) gives

(15)

11+12 = (B2_B3+2C~:f32I3) h(:().)),

= (B2-B3+2C~:f3213)9(>.), (16)

say. The problem is to find and approximate 9(>'). Note that if a linear approximation is

used for 9(>.), then this will result in an approximation to 11 + 12 which is linear in B1' B2'

B3, B4, and h· Notice also that the approximation of 9 is made distinctly easier by the fact

that it is a function of one variable only. If 9 were a general function of Bl,'" , B4• 13 the

calculations involved in making an approximation would be considerably more difficult.

The difficult part in the above procedure is inverting equation (15). However, approxi-

mating the solution of(15) directly is not the best way to proceed, since 1/12(9) is sufficiently

complicated that it too will need to be approximated in order to be evaluated by the device.

It is better to solve (15) exactly (maybe numerically), to give g().) exactly, and then to

approximate.
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In the next section we illustrate the procedure with an example in which gp.) can be

found analytically.

However, we first point out a possible problem. It is quite possible that in equation (15)

two different values of () will give the same value of .>.. Hence when we invert (15) there may

be more than one solution branch. The device will only be able to approximate one solution

branch (it has no means to decide which branch it is on), and this may lead to an erroneous

value of 0, and hence a miscalculation of 11+ 12• It is therefore important to make sure that

the solution of (15) remains on one branch for all relevant angles.

3 Example

In this section we consider the configuration of probes shown in figure 3. This corresponds

to the following choice of parameters:

(32 = 0,

Without loss of generality we set d = 1. Equations (8) and (9) become

2rl(I1 + 12)(ri - cos 2())
1+ rt - 2ri cos 20

2r2(I1 + 12)(r~ - cos 20)
1 + ri - 2r~ cos 20

(17)

(18)

Equation (l0) becomes

),= _ rl(ri - cos 20)(1 + r~ - 2r~ cos 20)
r2(r~ - cos 20)(1 + rt - 2ri cos 20)

(19)

This is a quadratic equation for cos 20, which is easily solved.

At this point (to avoid complicated formulas) we make our (arbitrary) choice of rl and

r2. We set "i = 0.5, r2 = 0.25. Solving for cos 20 we find

cos 20 = 265 + 140), - 3J6889 + 6296), + 1936),2
64(1 + 2),) (20)
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Here we have chosen the solution branch through 0 = O. Figure 4 shows ,\ as a function of

cos 20. We see that the solution remains on this branch until cos 20 = 1/16, or O'= 43.2° = Oe.

Hence this bounds the maximum deflection for which we can accurately solve for the residual

current in this case. Note also that, since)' - 00 as 0 - Oe, if this angle is close to our

desired range of operation we will have to approximate g().) over a much greater range of

values of X. Thus it is important that Oc is well outside the range of angles in which we

are interested. We consider from this point deflections of up to 30°. Figure 5 shows ). as a

function of 0 in this range. From (18) we now have

). _ 83 + 296), + J6889 + 6296), + 1936).2
g( ) - 4(87 + 44). - J6889 + 6296), + 1936).2) , (21)

and hence

I - B _ B 81 (83 + 296), + J6889 + 6296), + 1936).2 )
11 + 2 - (2 3 + 3) 4(87 + 44). _ J6889 + 6296), + 1936).2) . (22)

Figure 6 is a graph of 9 over the desired range. Since)' is measured we have now determined

the current 11 + 12 exactly, providing we can evaluate (22).

Because of the appearance of square roots in (22) it may not be possible to evaluate it

exactly with simple components. In this case we need to find the simplest approximation

within the required accuracy, over the required range of angles. For example, suppose that we

are interested in deflections up to 30°. Then we need to approximate (22) over the interval

),(0) ::;).::; ).(cos600), i.e. -2.5::;).::; -1.3 (see figure 5). One possible approximation

would be a Taylor series about). = ),(0). However, this would give a poor approximation

to (22) over the whole range of angles 0 ::; B ::; 30°. A Taylor series will give the best

approximation near B = 0, but what is really required here is a uniform approximation to the

desired accuracy over the whole range. Polynomial interpolation is a far better approach.

In fig. 7 g().) has been approximated linearly for angles up to 30° with the polynomial

PI = 6.54601 + 1.92456),. The error in this approximation is shown in fig. 8. We see that

the maximum error is about 7.5 percent over this range of angles. In fig. 9 g().) has been

approximated by the quadratic P2 = 10.7867 + 6.43345), + 1.14893).2 over the same range.

The error, shown in fig. 10~can be seen to be less than 0.6 percent.
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Other configurations can be treated in the same way. However, in most other cases it

will not be possible to solve analytically for cos 29.

4 Conclusion

In principle it is possible to solve exactly for the residual current 11+ 12 and the deflection

9 for any configuration of three probes or more. However, the problem in practice is to

approximate this solution in a way that the detector can evaluate easily.

A significant simplification occurs if four probes are used in two pairs of equal and opposite

probes. In particular, the deflection angle is now a function of only one variable, namely the

ratio .A= (Bl - B4 - (2 COs({31)/r1)13)/(B2 - B3 + (2 cos({32)/r2)13). This greatly simplifies

approximations of this angle.

Having settled on such a configuration the procedure is as follows:

1 Make sure the choice of the remaining parameters is such that the solution of 9 as a

function of .A remains on one solution branch for all relevant angles.

2 Solve (either analytically or numerically) equation (10) for 9 as a function of .A.

3 Substitute this solution into equation (9) to give 11+ 12= (B2 - B3 + (2 cos({32)/r2)I3)g(.A).

4 Approximate g(.A) to the desired accuracy over the desired range of values of .A.

The optimal configuration now depends on the types of approximation possible.

In the previous section we examined a configuration in which steps 1-3 above can be

performed easily and exactly. We then have an exact expression for the residual current

valid for all angles 9. What remains is to approximate this exact solution with functions

which the detector is able to evaluate (eg polynomials). With this configuration a linear

approximation gave a maximum error of about 7.5 percent for angles of deflection up to 30°,

and a quadratic approximation gave a maximum error of 0.6 percent over the same range.

If the device is such that it can perform division and multiplication of the probe readings

B1l··· 1 B4l 13 then ANY probe configuration can achieve ANY desired accuracy simply by

using interpolating polynomials of higher degree (subject to the constraint that the solution
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of equation (15) remains on one branch). In this case other factors will no doubt influence

the probe design.

If the device is such that it can only add, subtract and scale the probe readings, then a

linear approximation to g(>.) must be used. In such a situation various configurations could

be tried to see if the error in a linear approximation can be made small enough for the desired

range of deflections.

Finally we note since our primary concern was the residual current, we restricted ourselves

to approximating the sum 11+12, In fact a similar procedure works to give an approximation

of the difference 11 - h. By using both these approximations the individual currents 11 and

h could be calculated if necessary.
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