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1 Introduction

In recent years, interest in using lithium-ion (Li-ion) batteries as power sources for a wide range
of devices (particularly portable devices) has grown significantly. There is thus a real need to
understand at a fundamental level a wide range of battery performance criteria (energy density,
power density, safety, durability, cost).

Our working group considered how to model the fundamental electrochemistry and transport
of a simple Li-ion battery to obtain several basic mathematical results. We considered both a
dilute-ion model for the electrolyte, as well as a model which assumes that Li ions are present
in abundance (in excess). Both models assume Butler-Volmer interface reaction kinetics between
the electrolyte and the solid electrodes (anode or cathode), and both are homogenized to obtain
macroscale results. We also carried out a Monte Carlo simulation for transport in the solid electrode
assuming that the electrolyte is a prefect conductor.

This report is divided into six sections: The next section presents a first-principles derivation of
a mathematical model for ion transport and reaction kinetics in a simple porous-electrode battery
(cf. Figure 1). Ion transport is by advection and diffusion, and the assumptions are appropriate
for dilute ion concentrations. The standard charge-neutrality assumption is made in the electrolyte
except in a narrow Debye layer near the solid electrode. The Debye layer is accounted for by
a Butler-Volmer interface (boundary) condition. The model system is next non-dimensionalized,
simplified and averaged to obtain integrals for the total current produced by the cell. Details of
this averaging are presented in an appendix.
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Figure 1: A schematic of the equilibrium configuration of the battery. The electrodes are formed
of particles of the electrode material packed together. These are immersed in the electrolyte and
contact between the two electrodes is avoided by placing a porous spacer between them through
which only the electrolyte can percolate.

Section 3 then presents an electrochemical-potential model of the anode, cathode and electrolyte
with the same fundamental assumptions as the first model, except that ions in the electrolyte are
now assumed to be present in excess. This implies that transport in the electrolyte can be described
by the Gauss law. The resulting system is then also non-dimensionalized, and the following section
gives bounds for the homogenized effective conductivity for a steady-state version of this system.
These bounds are derived through a variational formulation of a linearized version of the problem.
Finally Section 5 presents an asymptotic analysis of a one-dimensional model for the battery, and
Section 6 discusses the Monte Carlo simulation mentioned above.

2 Advection-diffusion modelling for ion concentration in a dilute
electrolytic solution

The battery geometry. Typical lithium cells have two electrodes, composed of small particles
of electrode material compressed together, which are bathed in an electrolyte containing lithium
ions and separated by an insulating porous spacer, through which the electrolyte can permeate (see
Figure 1).

2.1 Formulation

In this section we consider a model for a dilute binary electrolyte containing positive and negative
ions species, with valence 1, and with concentrations cp and cn, respectively. At the electrodes,
reactions take place in which one, or both, ion species are produced and/or consumed. Typically,
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Figure 2: A schematic showing the domain of solution (a) surrounding an electrode particle and
(b) in a pore.

such reactions produce or consume electrons leading to build up of charge on the electrode and,
where both electrodes are connected through a resistive circuit, result in a current being driven
through that circuit and the electrolyte (in which case the electrode and electrolyte in conjunction
can be said to act as a battery). Alternatively a current may be forced through the electrolyte (by
the application of an electromotive force across the electrodes) and the reactions at the electrodes
driven in a particular direction (electrolysis).

The electrolyte bulk. In all but extremely narrow Debye layers (typical width 1nm) about the
surface of the electrodes charge neutrality is almost exactly satisfied - that is cp ≈ cn (see, for
example, [8] for further details). This motivates us to write cp ≈ c and cn ≈ c and write down the
following (approximate) conservation equations, in the standard fashion, for the two ion species in
the bulk of the electrolyte away from the Debye layers:

d∗
∂c
∂t +∇ · qp = 0, d∗qp = −Dp

(
∇c+ F

RgT
c∇φ

)
d∗

∂c
∂t +∇ · qn = 0, d∗qn = −Dn

(
∇c− F

RgT
c∇φ

)  in Ωe . (1)

Here the left-hand equations represent the conservation of the two ion species with respective ion
fluxes (qp and qn) being given by the right hand equations. In the latter the the first term on
the right-hand side represents a diffusive flux of ions while the second represents an advective
flux occurring as a result of the action of the electric field E = −∇φ upon the ions, where φ is
the electric potential in the electrolyte. The parameters Dp, Dn, F , Rg and T are the diffusion
coefficients of the positive and negative ions, Faraday’s constant, the universal gas constant and
absolute temperature, respectively. More details of the physical significance of these equations can
be found, for example, in [8]. It is also useful to write down an equation for the current density j
in terms of the ion fluxes

j = F (qp − qn).

The electrodes. In the electrodes metallic lithium diffuses to (or from) its interface with the
electrolyte where it is ionized and released into the electrolyte (or discharged and absorbed into
the electrode) by the surface electrode reaction. We denote its concentration by cs and write down
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its conservation equation

∂cs
∂t

+∇ · qs = 0 and qs = −Ds∇cs in Ωa and Ωc, (2)

noting that its motion is purely diffusive since lithium atoms are uncharged. In addition we must
also evaluate the electric potential ψ in the electrode and here we make the simplest assumption
(which is nevertheless pretty good), namely that the electrode is a sufficiently good conductor that
we can neglect spatial variations in ψ and write

ψ = 0 in Ωa and ψ = Φ(t) in Ωc. (3)

Here, since electric potential is invariant under translation, we are allowed to set ψ = 0 on x = 0.
The value of ψ on x = L (i.e. ψ = Φ) represents the total potential drop across the cell and is
one of the key variables that will be determined from the solution to the model. This drop can
be related to the current flowing in the circuit, via Ohm’s Law, and hence to the current density,
averaged over the electrode width, flowing into the electrode.

The electrode/electrolyte interfaces. Here we include the Debye layer, lying in the electrolyte
immediately adjacent to the electrode, in the interface region. When adopting this approach it is
standard to replace the complicated electrochemistry occurring in the Debye layer and on the
electrode surface by a number of boundary conditions, including the so-called Butler-Volmer condi-
tion. In [8] a version of these conditions is systematically derived from an analysis of the underlying
Poisson-Nernst-Planck (PNP) equations in the Debye layer. Here we merely state these conditions
in terms of the reaction rate R upon the surface of the anode

n · qp = R, n · qs = R, n · qn = 0, on ∂Ωae, (4)

R = k1cs exp
(
− F

2RgT
(φ− U(cs))

)
− k2c exp

(
F

2RgT
(φ− U(cs))

)∣∣∣∣
∂Ωae

. (5)

Here the first condition relates the normal flux of lithium (positive) ions away from the electrode
to the reaction rate R, the second states that the normal flux of lithium atoms into the electrode is
equal to that of lithium ions away from it, the third states that the reaction produces no negative
ions so that the normal flux of negative ions is zero and the fourth says that the Debye layer and
electrode surface have zero net charge (εel and εs are the permittivities of the electrolyte and the
electrode respectively). Also the anodic and cathodic transfer coefficients are taken to be αa =
αc = 1/2. The final equation is the Butler-Volmer equation which is essentially phenomenological,
but a version of which may be derived from analysis of the PNP equations in the Debye layer
[8]. The constants kp and kn are reaction rate constants and the function U(cs), contained in the
exponentials, is included to represent the effect of surface lithium ion concentration on the reaction
rate (cf. Fuller et al. [3] for discussion and experimental results).

Similar equations hold on the cathode and can be written, where the reaction rate is denoted
by S, in the form

n · qp = S, n · qs = S, n · qn = 0, on ∂Ωce, (6)

S = k3cs exp
(
− F

2RgT
(φ− Φ + V (cs)

)
− k4c exp

(
F

2RgT
(φ− Φ + V (cs))

)∣∣∣∣
∂Ωce

. (7)
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Note that the functional form of V (cs) will, in general, be different to that of U(cs) because of the
differences between the chemistry on the cathode and that on the anode.

The Butler-Volmer equations (5) and (7) can be simplified by writing it in terms of electro-
chemical potentials (cf. [7, pp. 16–19, 190–198], [1, 2]):

ι = RF = ι0 sinh
(
µs − µe
2RgT

)∣∣∣∣
∂Ωae

, (8)

ι = SF = ι0 sinh
(
µs − µe
2RgT

)∣∣∣∣
∂Ωce

. (9)

Here ι is the current density at the interface, ι0 is the exchange current density (which is not
necessary constant), and µs and µe are the electrochemical potentials for the solid electrode and
electrolyte, respectively:

µs := µcs, (10)
µe := µce + Fφ, (11)

where µc• are the chemical potentials in each phase. These chemical potentials depend on the ion
concentrations (and temperature), but not the electrical potentials. The difference ηs := µs−µe is
termed the surface overpotential and constitutes the main “driving force” at the interface.

The edge of electrodes. At the left- and right- hand edges of the electrodes (x = 0 and x = l)
the potential is constant and there is no flux of material either in or out of the electrolyte. We thus
impose the boundary conditions

qp · x|x=0 = qn · x|x=0 = 0, (12)
qp · x|x=l = qn · x|x=l = 0, (13)

Here, since electric potential is invariant under translation, we are allowed to set ψ = 0 on x = 0.
The value of ψ on x = l (i.e. ψ = Φ) represents the total potential drop across the cell and is one of
the key variables that will be determined from the solution to the model. This drop can be related
to the current flowing in the circuit, via Ohm’s Law, and hence to the current density, averaged
over the electrode width, flowing into the electrode.

The electrical circuit. The current I flowing in the circuit connected to this electrochemical
cell is related to the reaction rates or current densities on the electrodes by

I =
∫
∂Ωae

ι dA = F

∫
∂Ωae

RdA, and I = −
∫
∂Ωce

ι dA = −F
∫
∂Ωce

S dA. (14)

There are then two common scenarios. In the first of which I is specified, as in electrolysis and in
the second I is related to the potential drop across the cell via, for example, Ohm’s law

Φ = ωI, (15)

where ω is the resistance of the circuit.
Electrochemical cells are typically constructed such that the distance between the conducting

plate attached to the outer edges of the anode and that attached to the outer edge of the cathode
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is small in comparison to the breadth of the cell. It is therefore frequently useful, from a practical
point of view, to rewrite (14) in terms of the current flow, per unit area of the cell, I/A (here A
is the cross-sectional area of the cell). Let ∂Ω̃ae be the surface of electrode lying within a cylinder
(pictured in Figure 3) with cross-sectional surface area L2 and axis normal to the anode surface
spanning the width of the anode; similarly let ∂Ω̃ce be the surface of electrode lying within a
cylinder with cross-sectional area L2 and axis normal to the cathode surface spanning the width of
the cathode. It follows that (14) now take the form

IL2

A
= F

∫
∂Ω̃ae

RdA, and
IL2

A
= −F

∫
∂Ω̃ce

SdA. (16)

Note that the dimensionless surface area of the electrode particles contained within Ω̃ae and Ω̃ce is
of O(B̄L3) where B̄ is the typical electrode particle surface area per unit volume of electrode.

contained

Anode

∂Ω̃ae

in cylinder

Figure 3: The cylinder containing ∂Ωae.

The porous spacer. No reaction occurs on the edge of the porous spacer, which we assume is
an inert insulating material. We thus consider the electrolyte equations (1)-(1) holding within the
pores and impose the boundary conditions

n · qp = 0, n · qn = 0, εel
∂φ

∂n
= εp

∂ψ

∂n
on ∂Ω̂p. (17)

The potential within the the spacer material satisfies

∇2ψ = 0. (18)

2.2 Non-dimensionalization

Consider a cell with cross-sectional area A in which a current of typical magnitude Ī; the typical
current density is thus J̄ = Ī/A. Suppose further that the electrode widths are of O(L) and that
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they contain a volume fraction of electrode particles of O(1) with typical particle surface area
density (per unit volume) of O(B̄). We now non-dimensionalize (1)-(13) and (15)-(16) as follows:

d∗cs ∼ Πs, d∗c ∼ Π0, x ∼ L, t ∼ τ, d∗ψ ∼ Φ̄, d∗φ ∼ Φ̄, I ∼ J̄A, d∗ ∼ J̄ ,

Φ ∼ Φ̄ U ∼ Φ̄, V ∼ Φ̄, d∗R ∼ J̄
LB̄F

, d∗S ∼ J̄
LB̄F

, d∗qs ∼ Ī
LB̄F

, d∗qp ∼ J̄
F , d∗qn ∼ J̄

F .

Here Πs is the typical concentration of lithium atoms in the electrode, Π0 is the typical concentration
of lithium ions in the electrolyte, Φ̄ is the typical potential drop across the cell and D̄ is a typical
diffusivity in the electrolyte and τ is the typical timescale for discharge of the cell. Note that the
ion fluxes have been non-dimensionalized with the current density divided by Faraday’s constant
J̄/F but that the flux of lithium atoms in the electrode and the reaction rates at the electrode
surface are, however, estimated by dividing the current density by the typical total surface area of
the electrode (i.e. B̄L) multiplied by Faraday’s constant. It remains to estimate the timescale τ
for discharge of the cell. An estimate for the volume of the electrode is LA and it follows that the
number of moles of lithium atoms is of O(ΠsLA). The latter are consumed at a rate J̄A/F and so
the typical timescale for discharge of the cell is

τ =
FΠsL

J̄
.

Proceeding with the non-dimensionalization leads to the following dimensionless model:

d∗
∂c
∂t + ν∇ · qp = 0, d∗qp = −γκp(∇c+ λc∇φ)

d∗
∂c
∂t + ν∇ · qn = 0, d∗qn = −γκn(∇c− λc∇φ)

}
in Ωe, (19)

d∗
∂cs
∂t + δ∇ · qs = 0, d∗qs = −γν

δ κs∇cs in Ωa , (20)

d∗qp · n = δR, qn · n = 0, qs · n = R,

d∗R = K1cs exp
(
−λ

2 (φ− U(cs))
)
−K2c exp

(
λ
2 (φ− U(cs))

)
}

on ∂Ωae (21)

d∗
∂cs
∂t + δ∇ · qs = 0, d∗qs = −γν

δ κs∇cs in Ωc , (22)

d∗qp · n = δS, qn · n = 0, qs · n = S,

d∗S = K3cs exp
(
−λ

2 (φ− Φ + V (cs))
)
−K4c exp

(
λ
2 (φ− Φ + V (cs))

)
}

on ∂Ωce (23)

qp · x = 0, qn · x = 0, on x = 0
qp · x = 0, qn · x = 0, on x = Λ,

(24)

I = δ

∫
∂Ω̃ae

RdA, I = −δ
∫
∂Ω̃ce

SdA, (25)

Either I specified, or Φ = I, (26)

(note that where we use Ohm’s law to determine the current we choose Ī = Φ̄/ω). Here the
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dimensionless parameters are given by

d∗λ = F Φ̄
RgT

, d∗κp = Dp

D̄
, d∗κn = Dn

D̄
, d∗κs = Ds

D̄
,

d∗δ = 1
B̄L
, d∗γ = FΠ0D̄

J̄L
, d∗ν = Πs

Π0
, d∗Λ = l

L

d∗K1 = k1ΠsB̄LF
J̄

, d∗K2 = k2Π0B̄LF
J̄

, d∗K3 = k3ΠsB̄LF
J̄

, d∗K4 = k4Π0B̄LF
J̄

.

(27)

Here δ is a geometric parameter giving a measure of the electrode particle surface area per unit
area of the cell; λ gives the ratio of a typical potential drop across the cell to the thermal voltage;
κp, κn and κs are the dimensionless diffusivities of positive (Li+ ) ions, negative ions and lithium
atoms, respectively; γ gives a measure of the ratio of the maximum sustainable flux of ions in the
electrolyte to the actual ion flux; δ measures the ratio of the total electrode particle surface area to
the surface area of the cell; ν is the ratio of typical lithium concentrations in the solid to those in
the electrolyte; and K1, K2, K3 and K4 are dimensionless reaction rates. The parameter δ appears
in (25) and ensures that the right-hand sides of these equations is of O(1); the surfaces ∂Ω̃ae and
∂Ω̃ce have dimensionless area O(1/δ).

Remarks. Here we have non-dimensionalized so that the dimensionless fluxes qn, qp and qs are
typically all O(1). In addition, we note that the dimensionless parameter λ (representing the ratio
of the typical voltage drop across the cell to the thermal voltage) will play a particularly important
role in the analysis that follows. The thermal voltage RgT/F is, at room temperature about 25mV
and so λ will be large in most applications. Furthermore we remark that the factors δ appearing
in equations (25) ensure that the right-hand sides of these equations are of O(1), the dimensionless
surface areas of ∂Ωae and ∂Ωce being of O(1/δ).

2.2.1 Size of dimensionless parameters

We start by putting down some rough estimates for the sizes of the important dimensional param-
eters in the problem

d∗
RgT
F ≈ 0.025V, d∗Dp ≈ 10−11 or perhaps 10−9m2 s−1, d∗Dn ≈ Dp

3 m2 s−1, d∗Ds ≈ 10−12m2 s−1,

Π0 ≈ 103mol m−3, Πs ≈ 50× 103mol m−3, a ≈ 10−5m, L ≈ 1.5× 10−4m,

where a gives a typical radius of an electrode particle and the figures for Dp (in aqueous solution)
and Ds come from [11] and [4], respectively. We now use these dimensional parameters to estimate
the key dimensionless parameters

λ ≈ 180, κp = 1, κn ≈ 1/3, κs ≈ 10−1, ν ≈ 50.

We have little information about the sizes of the dimensionless reaction constants K1, K2, K3 and
K4. However as long as their sizes are not excessively large or small this makes little difference
since the exponentials in (21)-(23) are contain the large parameter λ and thus are expected to be
dominant.
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The geometric parameter δ. The parameter δ, gives the surface area density of electrode
particles per unit surface area of the cell and depends crucially on particle size. We can estimate δ
for a collection of uniform spheres of radius a; in particular we consider body centred cubic packing
(the spheres are centred at the corners of a cubic lattice) and close packing arrangements, such as
face-centred cubic packing and hexagonal close packing, in which the spheres are packed as densely
as possible:

body centred cubic δ =
√

2a
πL

, close packing δ =
2a
πL

. (28)

Referring to the rough estimates provided above a/L is typically about 1/15 and δ roughly 1/20–
1/50.

2.3 Simplifications of the equations and boundary conditions

Equations (19) can be rearranged to give an equation solely in terms of c and similarly φ can be
eliminated from the boundary conditions (21a)-(21b) and (23a)-(23b) to give

∂c

∂t
= 2γν

κnκp
κn + κp

∇2c in Ωe, (29)

∂c

∂n

∣∣∣∣
∂Ωae

= − δR

2γκp
,

∂c

∂n

∣∣∣∣
∂Ωce

= − δS

2γκp
. (30)

And thus if we know the reaction rates R and S this provides a closed system for c in Ωe. Similarly
we can find equations and boundary conditions for φ; these are

∇ · (c∇φ) =
1
λ

κn − κp
κn + κp

∇2c, (31)

c
∂φ

∂n

∣∣∣∣
∂Ωae

= − δR

2λγκp
, c

∂φ

∂n

∣∣∣∣
∂Ωce

= − δS

2λγκp
, (32)

2.4 Averaging in the electrolyte

Multiple-scales formalism. There are two disparate lengthscales in this problem corresponding
to that of the electrode particles (O(δ) in dimensionless units) and that of the electrolytic cell (O(1)
in dimensionless units). In order to analyze the problem it is helpful to introduce a microscale
variable x̂ on the particle lengthscale. Furthermore we assume that there is local periodicity in the
electrode particle arrangement and, in particular, that the structure is periodic within a repeating
domain V̂per ∪ Ω̂per (see Figure 6). In fact, in order to keep the treatment as general as possible, we
shall allow the shape and size of the particles (denoted by Ω̂per) to vary over the long lengthscale
x but, as a consequence of the multiple scale method we employ, we require that the union of the
domain occupied by the particles Ω̂per and that occupied by the electrolyte lying outside them V̂per
to be strictly periodic. Rather than rescale x with δ directly we rescale with δp where δp measures
the size of the periodic domain V̂per ∪ Ω̂per (e.g. the length of its edges where it is cuboidal) and p
is an O(1) parameter. Thus the microscale variable is defined by

x = δpx̂, (33)

and the gradient operator transforms according to ∇ → ∇+ ∇̂/(δp). These definitions are used in
the appendix to derive homogenized versions of the equations for ion concentration c and electric
potential φ within the electrolyte by using the method of multiple scales.
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The homogenized equations. We apply the method of multiple scales in appendix A to write
down an averaged equation for the diffusion of lithium ions in the electrolyte and the potential in
the electrolyte. By comparing (29)-(32) to (70)-(72) we can identify

D = 2γν
κnκp
κn + κp

, ε = δp k =
νκn

p(κn + κp)
, α =

κn − κp
κn + κp

.

By analogy with (85) and (90), the averaged equation for c and φ in the electrodes are

V ∂c
∂t

= 2γν
κnκp
κn + κp

∂

∂xi

(
Bij

∂c

∂xj

)
+

νκn
p(κn + κp)

Q̃, (34)

∂

∂xi

(
Bij
(
λc

∂φ

∂xj
−
(
κn − κp
κn + κp

)
∂c

∂xj

))
+

Q̃

pγ(κn + κp)
= 0. (35)

where Bij is defined in (86) and

Q̃ =


d∗
∫
∂Ω̂per

RdŜ in the anode

d∗
∫
∂Ω̂per

SdŜ in the cathode

2.5 Rescaling of the solid diffusion equations about a single electrode particle

Rescaling distances in (21) and (23) by δp (which is of the order of the particle dimensions) via
(33) we obtain

∂cs
∂t

= Γ∇̂2cs, qs = −Γ∇̂cs,
∂cs
∂n̂

∣∣∣∣
∂Ω̂per

= −Q
Γ
, (36)

where Q = R in the anode and Q = S in the cathode. Note that since we consider diffusion
of lithium within a single particle (there is no diffusion between particles), ∇ → ∇̂/(δp). The
parameter Γ = γνκs/p

2δ2 is important and can be expressed, on referring back to (28), in the form

Γ =
γνκs
p2δ2

=
FΠsDsĀ

J a
× (O(1) constant),

where J is the typical current density on the surface of the particle. It can thus be seen to play the
role of γ inside the electrode giving the ratio of the maximum sustainable flux of Lithium atoms to
the actual atomic flux.

2.6 The current equations

Consider now the equations relating the current to the reaction rates (25). The volume of each
microscale periodic domain V̂per ∪ Ω̂per on the microscale is (δp)3(

∫
V̂per

dV̂ +
∫

Ω̂per
dV̂ ) which we

rewrite in the form (δp)3(V+ |Ω̂per|). The number of microscale periodic domains contained within
a macroscopic volume dV is thus dV/((δp)3(V + |Ω̂per|)). On recalling that ∂Ωae is the electrode
surface contained in a cylinder of unit cross-sectional area between x = 0 and x = 1 while ∂Ωce is
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the electrode surface contained in a cylinder of unit cross-sectional area between x = 1 and x = Λ
it follows that ∫

∂Ω̃ae

RdA =
∫ 1

0
(δp)2

(∫
∂Ω̂per

QdŜ

)
dx

(δp)3(V + |Ω̂per|)
,

∫
∂Ω̃ce

RdA =
∫ Λ

1
(δp)2

(∫
∂Ω̂per

SdŜ

)
dx

(δp)3(V + |Ω̂per|)
.

In turn this can be rewritten as∫
∂Ω̃ae

RdA =
1
δp

∫ 1

0

R̃

V + |Ω̂per|
dx

∫
∂Ω̃ce

SdA =
1
δp

∫ Λ

1

S̃

V + |Ω̂per|
dx.

Hence we can rewrite (25) in terms of the locally averaged reaction rates R̃ and S̃ as

I =
1
p

∫ 1

0

R̃

V + |Ω̂per|
dx, I =

1
p

∫ Λ

1

S̃

V + |Ω̂per|
dx.

3 Excess-ion electrolytic modelling

Assumptions. Most of the assumptions discussed in the previous section (geometry, Butler-
Volmer kinetics, perfect solid conduction) continue to be made here. The only exception is that
now the Li ions are assumed to be present in the electrolyte in excess. This is the opposite of
assuming dilute ion concentrations, and it may be less appropriate for polymer electrolytes, but it
leads to a particularly simple model.

3.1 Electrolyte transport

Given that the ions (positive and negative) are present in excess in the electrolyte, their concentra-
tions and chemical potentials are essentially constant. Thus the electrochemical potential gradient
in the electrolyte is proportional to the electrical potential gradient,

∇µe = F∇φ (37)

and transport in the electrolyte is by electrical conduction only. Thus the equation for µe is given
by the Gauss law:

0 = ∇(σ∇µe) (38)

where σ is the electrical conductivity of the electrolyte.

3.2 Potential system

Let u := µe/2RgT and v := µs/2RgT be the non-dimensional electrochemical potentials in the
electrolyte and solid respectively. One can then derive a potential model for the battery:

0 = ∇(σ∇u), in Ωe, (39)

∂v

∂t
= ∇(κs∇v), in Ωa, Ωc, (40)

−σ∇µe · n = −κs∇µs · n = ιF = ι0F sinh (v − u) , on ∂Ωae, ∂Ωce , (41)
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The electrochemical conductivity κs in the solid electrode is proportional to the diffusivity Ds:

κs =
2F 2Ds

∂µs/∂cs
(42)

where the partial derivative is given by a constitutive relation. If the Li atoms obey the ideal gas
law, then

µs = µcs = µeqs +RgT ln
(
cs
ceqs

)
. (43)

This system (39–41) must be coupled with far-field conditions equivalent to (24–26) to give a
complete potential model for the battery, but these far-field conditions will not be a part of the
discussion in this section or the next, so they are not specifically defined here.

The potential system (39–41) can be non-dimensionalized using the same length and time scales
as before, and the following dimensionless parameters: ε := κs/σ and i0 = ι0FL/2RgTσ. Using
these parameters, one obtains a non-dimensional potential system:

0 = ∇2u, in Ωe, (44)

∂v

∂t
= ∇(ε∇v), in Ωa, Ωc, (45)

−∇u · n = −ε∇v · n = i0 sinh (v − u) , on ∂Ωae, ∂Ωce , (46)

A similar potential system can be derived in the dilute-ion case, but there are compatibility
conditions that must be satisfied if the potential system is to be equivalent to the concentration
system derived in the previous section.

4 Steady State Homogenization for the Cathode

This section deals with the variational homogenization of the cathode, and presents exact bounds
on the effective (homogenized) conductivity. Based on the non-dimensional potential system (44–
46) above, one can derive a non-dimensional steady-state system by setting the time derivative in
the solid electrode equal to a constant:

−∂v
∂t

= g (47)

where g is a non-dimensional constant source term; g > 0 in the cathode representing that the
cathode is a source for Li+ ions. This steady-state assumption is not appropriate when current
first begins to flow (just after the battery is first put in a circuit), or near the end of the battery’s
life, but should be reasonable when the battery is providing essentially steady current at essentially
constant potential. In this case, the solid cathode is a steady source for Li atoms to diffuse toward
the cathode surface. Combining (44–46) and (47), one obtains a non-dimensional steady-state
potential system:

0 = ∇2u, in Ωe, (48)

−∇ · (ε∇v) = g, in Ωc, (49)

−∇u · n = −ε∇v · n = i0 sinh (v − u) , on ∂Ωce. (50)
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Again this system must be coupled with the same sorts of far-field conditions as in the previous
sections.

Now let θs be the fraction of cathode composed of solid electrode, and θe := 1−θs, the electrolyte
fraction. Studying composite materials, Lipton & Vernescu [5, 6] used a variational approach to
the linearized case where sinh(v − u) is replaced by v − u. In this case they have shown that one
can average over the cathode to obtain a single homogeneous equation for v defined on the entire
cathode, not just the solid electrode:

∇ · (κ∇v) = θsg, in Cathode = Ωe ∪ ∂Ωce ∪ Ωc . (51)

Here κ is a non-dimensionalized effective (macro-scale) electrochemical conductivity. A similar
equation hold for u again extended to the entire averaged cathode, not just the electrolyte. The
principal significance of these averaged (homogenized) equations is that one can obtain rigorous
bounds on the effective conductivity κ. In particular, Lipton & Vernescu find that(

1
1−m0

+
1
θsc∗

)−1

≤ κ ≤

(
1
ε

+
θei0δ + θsλ+ 2

3ε

i0λδ + 2
3θeλε+ 2

3θsεi0δ

)−1

(52)

where

λ := (1− 1/ε)−1 , (53)
c∗ := 1/i0δ − (1− 1/ε) , (54)

and again δ is the typical dimensionless particle radius. The parameter m0 is the effective con-
ductivity for a cathode with the solid electrode particles replaced by nonconducting particles and
an electrolyte having unit conductivity. This effective conductivity is the inverse of the formation
factor in the porous media literature.

5 Asymptotic analysis

Here we consider one-dimensional problem based on the first dilute-ion model describing a planar
cell in which the anode occupies the region 0 < x < 1 while the cathode occupies the region
1 < x < Λ and is separated from the anode by a thin spacer. Furthermore we assume that the
composition of the electrodes is isotropic so that Bij = B(x)δij .

We base our asymptotic analysis of the model on the assumptions that λ� 1 and, in line with
parameter estimates, consider the distinguished limit γ = O(1), κn = O(1), κp = O(1), V = O(1),
ν = O(λ) and Γ = O(λ). In addition the other significant choice we have is that of γ which we
take to be O(1); from a physical point of view this corresponds to placing a very high load on the
battery and so is a particularly interesting limit. Following the assumptions made about the sizes
of the parameters Γ and ν we write

Γ = λΓ̃, ν = λν̃,

where Γ̃ and ν̃ are O(1) parameters.
We expand the variables as follows:

c = c0(x, t) + · · · , d∗φ = φ0(t) + 1
λφ1(x, t) + · · · , Φ = Φ0 + · · · ,

d∗cs = cs,0 + 1
λcs,1 + · · · , d∗R̃ = R̃0 + · · · , S̃ = S̃0 + · · · .

(55)
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The electrolyte. Substitution of the above expansion into (34) and (24) yields

∂

∂x

(
B∂c0
∂x

)
+

1
2pγκp

(R̃0H(1− x) + S̃0H(x− 1)) = 0, (56)

∂c0
∂x

∣∣∣∣
x=0

= 0,
∂c0
∂x

∣∣∣∣
x=Λ

= 0, (57)

where H(·) is the Heaviside function. Since this is Neumann problem for c0 we require an extra
condition on c0 in order to specify its magnitude. It is clear from (24) that lithium ions neither enter
nor leave the system. Thus the average lithium ion concentration across the cell is independent of
time. Assuming that c has been non-dimensionalized with this average concentration implies that∫ Λ

0
c0dx = Λ (58)

Butler Volmer conditions. Substitution of the expansion (55) into the Butler-Volmer condi-
tions (21d) and (23d) yields, to leading order,

φ0(t) = U(cs,0|∂Ωae), Φ0 = φ0(t) + V (cs,0|∂Ωce). (59)

An important corollary of this result is that the concentration of lithium on the edge of the anode
particles cs,0|∂Ωae and the concentration of lithium on the edge of the cathode particles cs,0|∂Ωae

are both functions of time only being completely independent of the position of the particle within
the electrode.

The electrode particles. The leading order terms in the expansion of (36)-(36) are

∇̂2cs,0 = 0,
∂cs,0
∂n

∣∣∣∣
∂Ω̂per

= 0

in both anode and cathode particles. Solving the above gives

cs,0 = ca,0(t) in the anode, cs,0 = cc,0(t) in the cathode. (60)

Proceeding to next order in the expansion of (36)-(36) we find

dcs,0
dt

= Γ̃∇̂2cs,1,
∂cs,1
∂n

∣∣∣∣
∂Ω̂per

= −Q0

where Q0 = R0 in the anode and Q0 = S0 in the cathode. Integrating this over the particles
contained within the periodic domain Ω̂per yields

|Ω̂per|
dcs,0
dt

= −Γ̃
∫
∂Ω̂per

Q0dŜ = −Γ̃Q̃0,

where |Ω̂per| =
∫

Ω̂per
dV̂ . By substituting this expression into leading order expansion of (80) we

obtain the following expressions for the rate of change of lithium ion concentration in the electrodes
and for the averaged reaction rates

d∗
dca,0

dt = −IpΓ̃
(∫ 1

0
|Ω̂per|
V+|Ω̂per|

dx
)−1

, d∗
dcc,0

dt = IpΓ̃
(∫ Λ

1
|Ω̂per|
V+|Ω̂per|

dx
)−1

,

d∗R̃0 = Ip|Ω̂per|
(∫ 1

0
|Ω̂per|
V+|Ω̂per|

dx
)−1

, d∗S̃0 = −Ip|Ω̂per|
(∫ Λ

1
|Ω̂per|
V+|Ω̂per|

dx
)−1

,

(61)
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Summary of the simplified model. The resulting leading order model is comprised of equa-
tions (56), (57), (58), (59) and (61) which, on dropping subscripts and substituting R or S as
appropriate for Q, can be written as

d∗
dca
dt

= −IpΓ̃

(∫ 1

0

|Ω̂per|
V + |Ω̂per|

dx

)−1

, d∗
dcc
dt

= IpΓ̃

(∫ Λ

1

|Ω̂per|
V + |Ω̂per|

dx

)−1

, (62)

φ(t) = U(ca), Φ = φ(t) + V (cc), (63)

and

∂

∂x

(
B ∂c
∂x

)
+

1
2pγκp

(
R̃H(1− x) + S̃H(x− 1)

)
= 0, (64)

∂c

∂x

∣∣∣∣
x=0

= 0,
∂c

∂x

∣∣∣∣
x=Λ

= 0,
∫ Λ

0
cdx = Λ, (65)

d∗R̃ = Ip|Ω̂per|

(∫ 1

0

|Ω̂per|
V + |Ω̂per|

dx

)−1

, d∗S̃ = −Ip|Ω̂per|

(∫ Λ

1

|Ω̂per|
V + |Ω̂per|

dx

)−1

. (66)

Note that
∫ Λ

0 R̃H(1 − x) + S̃H(x − 1)dx = 0 (since V + |Ω̂per| is constant throughout the entire
cell) and hence that a solution to (64)-(66) exists. If the battery is being charged then typically I
is specified. If, on the other hand, it is being used to power a device then it will be related to the
total potential drop across the cell by, for example, Ohm’s law

Φ = Iω, (67)

where ω is the resistance of the device.
From a practical point of view the desired outputs of the model are the current I (where this is

not specified) and the potential drop across the cell Φ. These may be obtained from solving (62)-
(63) and (67). The importance of the remaining equations (64)-(66) may therefore be questioned.
However these still need to be solved in order to check whether the solution for c passes through
zero. If it does the asymptotic expansion is invalid in at least some region of the cell; physically
this corresponds to a high power demand on the cell causing lithium ion concentration to decrease
to zero, leading to a break in the current flowing through the electrolyte and hence failure of the
cell.

6 Computations with Two-Dimensional Anode Geometries

In this section we describe an atomistic approach to modelling certain aspects of the lithium ion bat-
tery system. In particular, we focus here only on the anode region of the battery and further allow
only diffusion of lithium in the solid particles and ionization of lithium at the particle/electrolyte
interface. Diffusion and advection of lithium ions in the electrolyte are assumed to occur on a
fast time scale such that lithium ions entering the electrolyte are instantaneously swept away. The
numerical calculations do incorporate certain two-dimensional features of the anode geometry by al-
lowing for the specification of a given packing fraction and a particle size distribution. Given such a
distribution of particles, a Kinetic Monte Carlo (KMC) algorithm is implemented to model diffusion
of lithium in the solid particles and ionization of lithium at the particle/electrolyte interface.
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Figure 4: This figure shows an initial configuration of the electrode particle distri-
bution in the anode in which all sites in each particle are filled with lithium atoms.

The numerical calculations set up a packing of particles in the anode in which the particle sizes
are normally distributed. An example is shown in Figure 4. Lithium atoms are assumed to occupy
points on a grid (80 × 60 in this example) that fall within the prescribed particles.

The above configuration of lithium atoms is then used as the initial condition for a Kinetic
Monte Carlo scheme in which the lithium atoms diffuse in the solid and undergo reaction at the
particle/electrolyte boundaries at generic ‘hopping’ rates Rj defined by the following expression

Rj = kT exp
[
− Ej
kBT

]
, (68)

where kT is a rate constant, kB is the Boltzmann constant and T is the temperature. This basic
approach was developed based on ideas outlined in Voter[12] and Schulze[9, 10]. In the present
situation, we identify a finite number of events associated with the different rates Rj determined
by different neighborhood configurations. In particular, we define

E1 = EB, E2 = EB + En, E3 = EB + 2En, E4 = EB + 3En
E5 = EB + E+

n , E6 = EB + En + E+
n , E7 = EB + 2En + E+

n , E8 = EB + 3En + E+
n , (69)

where EB is an energy barrier present at each grid location, En is the energy associated with each
lateral nearest neighbor in the solid particle and E+

n is the energy associated with the ionization of
a lithium atom at the particle/electrolyte interface. For example, E3 represents the energy barrier
associated with the motion of a lithium atom with two lateral nearest neighbors from one point
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Figure 5: This figure shows the configuration of the particles in the anode after
diffusion of lithium in the solid and has begun and ionized lithium is released into
the surrounding electrolyte. Solid (blue) circles indicate the presence of lithium and
open (red) circles indicate the location where lithium has diffused away. Diffusion
of lithium in the particles and ionization at the particle/electrolyte boundaries are
assumed to occur at rates based on nearest-neighbor interactions and known reaction
rates.

in the solid particle to an adjacent point in the solid. Similarly, E8 represents the energy barrier
associated with the ionization of a lithium atom in the solid particle with three nearest neighbors
into the electrolyte. While in principle one could undergo a study to relate the values EB, En
and E+

n to known diffusion coefficients and reaction rates, we have not made an attempt to do so
here. Rather we have simply specified values for EB, En and E+

n in order to assess this approach
as a possible means of a more in depth study of this problem. To be sure, one would need to
incorporate at a minimum transport effects of the lithium ions in the electrolyte and event rates
that in a relative sense represent the different diffusion and ionization rates of lithium in order
capture quantitative aspects of the anode.

We have implemented a basic KMC algorithm to execute an ‘event’ following the work of
Voter[12] and Schulze[9]. For example, an event could be a lithium atom with no nearest neighbors
in the solid hopping from one site in the solid to another site in the solid, or a lithium atom at the
particle boundary with one nearest neighbor in the solid ionizing and ‘hopping’ into the electrolyte).
An example of the particle anode system after the execution of 10000 events is shown in Figure 5.

The above two-dimensional atomistic approach to the lithium ion battery problem should be
viewed as a potential starting point for the study of effects such as particle geometry and packing,
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diffusion and reaction in the particles. This approach further may provide a means to incorporate
other critical features of the model such as those related to the porous spacer, the cathode and
three-dimensional effects.

7 Conclusion

We formulated two detailed models for an electrolytic cell with particulate electrodes based on a
lithium atom concentration dependent Butler-Volmer condition at the interface between electrode
particles and the electrolyte. The first was based on a dilute-ion assumption for the electrolyte,
while the second assumed that Li ions are present in excess. For the first, we used the method
of multiple scales to homogenize this model over the microstructure, formed by the small lithium
particles in the electrodes. For the second, we gave rigorous bounds for the effective electrochemical
conductivity for a linearized case. We expect similar results and bounds for the full nonlinear
problem (48–50) because variational results are generally not adversely affected by a sinh term.

Finally we used the asymptotic methods, based on parameters estimated from the literature,
to attain a greatly simplified one-dimensional version of the original homogenized model. This
simplified model accounts for the fact that diffusion of lithium atoms within individual electrode
particles is relatively much faster than that of lithium ions across the whole cell so that lithium
ion diffusion is what limits the performance of the battery. However, since most of the potential
drop occurs across the Debye layers surrounding each electrode particle, lithium ion diffusion only
significantly affects cell performance if there is more or less complete depletion of lithium ions
in some region of the electrolyte which causes a break in the current flowing across the cell. This
causes catastrophic failure. Providing such failure does not occur the potential drop across the cell is
determined by the concentration of lithium atoms in the electrode particles. Within each electrode
lithium atom concentration is, to leading order, a function of time only and not of position within
the electrode. The depletion of electrode lithium atom concentration is directly proportional to the
current being drawn off the cell. This leads one to expect that the potential of the cell gradually
drops as current is drawn of it.

We would like to emphasize that all the homogenization methods employed in this work give
a systematic approach for investigating the effect that changes in the microstructure have on the
behaviour of the battery. However, due to lack of time, we have not used this method to investigate
particular particle geometries.

We would also like to point out possible extensions to the model. The most important of these
is to investigate effects arising from changes in electrode particle size or geometry which occur as a
result of depletion/accretion of lithium atoms. Another extension to this work is to carry out the
homogenization of the potential and the lithium ion concentration in the spacer.
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A Derivation of the averaged diffusion equation with sources.

In this section we consider how we can derive averaged equations, over the lengthscale of the
electrode, for the processes occurring in the electrolyte where the electrolyte has a micro structure.
In this instance we take the lengthscale of the microstructure to be of O(ε) and that of the electrode
to be of O(1) where ε� 1. Furthermore we assume that the microstructure is locally periodic inside
a completely periodic array of boxes which we denote by V̂per∪ Ω̂per. Here V̂per represents the space
inside this box occupied by the electrolyte while Ω̂per represents the space occupied by the electrode
(see figure 6 for an example configuration). For the sake of generality we allow the microstructure
to change slowly, over the O(1) lengthscale, and it is in this sense that it is locally periodic.

Consider the following dimensionless equations for c and φ which both satisfy Neumann bound-
ary condition on the microstructured boundary ∂Ω̂per

∂c

∂t
+∇ · q = 0, where q = −D∇c, (70)

q · n|∂Ω̂per
= εkQ, (71)

∇ · f = 0 where f = −D(λc∇φ− α∇c), (72)
f · n|∂Ω̂per

= εk(1− α)Q, (73)
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Figure 6: Illustration of the microstructured boundary.

Here n is the unit outward normal to Ω̂per or equivalently the unit inward normal to V̂per (see figure
6).

Multiple scales formulation. We investigate the distinguished limit that k, D and Q are O(1)
while ε� 1 by introducing the microscale variable x̂ defined by

x = εx̂.

In terms of this new variable the multiple scales expansion of the operator ∇ takes the form
∇ = ∇+ ∇̂/ε. We can thus rewrite (70)-(72) in the form

∂c

∂t
+

1
ε
∇̂ · q +∇ · q = 0, q = −D

(
1
ε
∇̂c+∇c

)
, (74)

q · n|∂Ω̂per
= −εQ, c periodic in x̂ on V̂per, (75)

1
ε
∇̂ · f +∇ · f = 0, f = −D

[(
1
ε
λc∇̂φ+ λc∇φ

)
− α

(
1
ε
∇̂c+∇c

)]
, (76)

f · n|∂Ω̂per
= εkQ(1− α), φ periodic in x̂ on V̂per, (77)

Mathematical preliminary. Before proceeding with the expansion we re-emphasize that al-
though the interface ∂Ω̂per is approximately periodic on the short lengthscale significant variations
can occur over the longer x lengthscale. We will find it useful to define this interface by the zero
level set of the function ψ, that is by the relation ψ(x̂,x) = 0. Furthermore we define ψ so that n,
the outward unit normal to Ω̂per, (or equivalently the unit inward normal to V̂per) is given by

n = − ∇̂ψ + ε∇ψ
|∇̂ψ + ε∇ψ|

. (78)

We are then able to calculate the rate of change of a quantity A(x̂,x) integrated over the locally
periodic domain V̂per in terms of the surface function ψ (see §A.1) finding it to be

∂

∂xi

∫
V̂per

A(x̂,x)dV̂ ∼
∫
V̂per

∂A

∂xi
dV̂ −

∫
∂Ω̂per

A
1
|∇̂ψ|

∂ψ

∂xi
dŜ.
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In turn we can use the above result to show that

∇ ·
∫
V̂per

q(x̂,x)dV̂ ∼
∫
V̂per

∇ · qdV̂ −
∫
∂Ω̂per

A
q · ∇ψ
|∇̂ψ|

dŜ. (79)

The asymptotic expansion. We now expand the variables in (74)-(77) as follows:

c = c0(x, t) + εc1(x̂,x, t) + ε2c2(x̂,x t) + · · · ,

φ =
1
λ

(
φ0(x, t) + εφ1(x̂,x, t) + ε2φ2(x̂,x t) + · · ·

)
,

q = q0(x̂,x, t) + εq1(x̂,x, t) + ε2q2(x̂,x, t) + · · · ,
f = f0(x̂,x, t) + εf1(x̂,x, t) + ε2f2(x̂,x, t) + · · · .

Derivation of a solvability condition on c0. Consider first the flux equations for q (74)-(75).
To leading order we obtain

∇̂ · q0 = 0, q0 · n|∂Ω̂per
= 0, q0 periodic in x̂ on V̂per. (80)

At O(ε) in (74)-(75) we find

∂c0
∂t

+ ∇̂ · q1 +∇ · q0 = 0, q1 periodic in x̂ on V̂per,

q1 · n|∂Ω̂per
= kQ,

Rewriting the boundary condition (81) in terms of the surface function ψ(x̂,x) (recalling that the
normal to ∂Ω is given by (78)) gives

q1 · ∇̂ψ + q0 · ∇ψ|∂Ω̂per
= −|∇̂ψ|kQ. (81)

Integrating (81) over V̂per and using the fact the outward normal to V̂per on that section of the
boundary it shares with Ω̂per is, to leading order in ε, ∇̂ψ/|∇̂ψ| results in the integral equations∫

V̂per

∂c0
∂t

+∇ · q0dV̂ +
∫

Ω̂per

q1 ·
∇̂ψ
|∇̂ψ|

dŜ = 0,

which in turn, on substitution of (81) gives∫
V̂per

∂c0
∂t

+∇ · q0dV̂ −
∫

Ω̂per

q0 ·
∇ψ
|∇̂ψ|

dŜ =
∫

Ω̂per

kQdŜ,

Finally, we use the result (79) to rewrite this in the desired form∫
V̂per

∂c0
∂t

dV̂ +∇ ·
∫
V̂per

q0dV̂ =
∫

Ω̂per

kQdŜ, (82)

It remains to determine q0 in terms of c0. To leading order in (74b) we find

q0 = −D(∇c0 + ∇̂c1).
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Substitution of this into (80) yields

∇̂2c1 = 0, n · ∇̂c1|∂Ω̂per
= −n · ∇c0|∂Ω̂per

, c1 periodic in x̂ on V̂per.

We make use of the linearity of this problem to write its solution in the form

c1 = −
(
∂c0
∂x1

χ(1)(x̂,x) +
∂c0
∂x2

χ(2)(x̂,x) +
∂c0
∂x3

χ(3)(x̂,x)
)
, (83)

where the basis functions χ(i) satisfy the following problems:

∇̂2χ(i) = 0,
∇̂χ(i) · n|∂Ω̂per

= ei · n|∂Ω̂per
,

χ(i) periodic in x̂ on V̂per,∫
V̂per

χ(i)dV̂ = 0

 for i = 1, 2, 3 (84)

and ei is a basis vector in the xi-direction. It follows that the leading order flux is given by

q0 = −D

(
δij −

∂χ(j)

∂x̂i

)
∂c0
∂xj

ei.

where the Einstein summation convention is used. Substitution of this result into (82) then yields
an equation for c0 in terms of the macroscopic variable x

V ∂c0
∂t

= D
∂

∂xi

(
Bij

∂c0
∂xj

)
+ kQ̃, (85)

where

V =
∫
V̂per

dV̂ , Bij =

(
Vδij −

∫
V̂per

∂χ(j)

∂x̂i

)
, Q̃ =

∫
∂Ω̂per

QdŜ (86)

Derivation of a solvability condition on φ0. The derivation of the solvability condition for
φ0 proceeds along very similar lines to that for c0. At leading order in the flux equations for f ,
namely (76) we find

∇̂ · f0 = 0, f0 · n|∂Ω̂per
= 0, f0 periodic in x̂ on V̂per. (87)

At next order we find an equation for f1 which we can integrate in a similar manner to that for q1

in order to obtain the following solvability condition on f0:

∇ ·
∫
V̂per

f0dV̂ = k(1− α)
∫
∂Ω̂per

QdŜ. (88)

Substituting the expansions for c and φ into (76b) gives the following expression for f0:

f0 = −D
(
c0∇̂φ1 − α∇̂c1 + c0∇φ0 − α∇c0

)
.
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In turn substitution of this expression into (87) yields a system for φ1

∇̂2φ1 = 0, ∇̂φ1 · n|∂Ω̂per
= −∇φ0 · n|∂Ω̂per

,

with solution

φ1 = −
(
∂φ0

∂x1
χ(1)(x̂,x) +

∂φ0

∂x2
χ(2)(x̂,x) +

∂φ0

∂x3
χ(3)(x̂,x)

)
, (89)

from which it follows that

f0 = −D

(
δij −

∂χ(j)

∂x̂i

)(
c0
∂φ0

∂xj
− α∂c0

∂xj

)
ei.

On substitution of this expression into (88) we obtain an equation for φ0

D
∂

∂xi

(
Bij
(
c0
∂φ0

∂xj
− α∂c0

∂xj

))
+ k(1− α)Q̃ = 0. (90)

Notably the macroscale equations (85) and (90) we have derived for c0 and φ0, respectively, are
both in conservation from.

A.1 Rate of change of integrated quantities

Consider the surface ∂Ω̂per defined by ψ(x̂,x) = 0. Alternatively we can write this in the form
x̂ = r(τ1, τ2,x) so that ψ(r,x) = 0. Since ψ(r + dr,x + dxiei) = 0 it follows that

∂r

∂xi
· ∇̂ψ = − ∂ψ

∂xi
.

By using the fact that the unit inward normal to V̂per is defined, in terms of ψ, by n = −∇̂ψ/|∇̂ψ|+
O(ε) we can rewrite the above in the form

∂r

∂xi
· n =

1
|∇̂ψ|

∂ψ

∂xi
+O(ε), (91)

(see figure 7 for an illustration on this). We can identify the quantity dxi ∂r∂xi
·n as the normal dis-

tance between the surface ∂Ω̂per at x and ∂Ω̂per at x+dxiei. The rate of change of
∫
V̂per

A(x̂,x)dV̂
is thus comprised of two terms, the first representing the rate of change of A with xi and the second
arising from the rate of change of the boundary to V with xi which can be written as the surface
integral

−
∫
∂Ω̂per

A
∂r

∂xi
· ndŜ

It follows that

∂

∂xi

∫
V̂per

A(x̂,x)dV̂ ∼
∫
V̂per

∂A

∂xi
dV̂ −

∫
∂Ω̂per

A
1
|∇̂ψ|

∂ψ

∂xi
dŜ.

Here the first term on the right-hand side represents the change in A with xi while the second term
arises because the domain V̂per changes
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∂Ω̂(x)

V̂

Ω̂

n

dr

∂Ω̂(x + dxiei)

Figure 7: Illustration of the microstructured boundary.

A.2 Useful Results

There are a number of results which help illustrate the behaviour of the tensor Bij . The most of
important of these are ∫

V̂per

∂χ(j)

∂x̂i
dV̂ = −

∫
∂Ω̂per

χ(j)ei · ndŜ, (92)∫
V̂per

∂χ(j)

∂x̂i
dV̂ =

∫
V̂per

∂χ(i)

∂x̂j
dV̂ , (93)∫

V̂per

∂χ(i)

∂x̂i
dV̂ > 0 (no summation). (94)

The first of these results can be demonstrated by a straightforward application of the divergence
theorem; the proofs for the second and third result are given below.

We can use results (93)-(94) to show that

Bij = Bji, Bii < 1. (no summation). (95)

Thus the tensor Bij is symmetric and furthermore the effective diffusivity in any particular direction
is reduced by the microstructure below that which would be observed without microstructure (which
is precisely what one expects). In particular, for a uniform isotropic microstructure we have (as
previously stated) Bij = Bδij with B > 0. It follows that the effective diffusivity DB is smaller
than the diffusivity D in the absence of microstructure.

Proof of (93). Consider the integral I defined by

I =
∫
V̂per

∇̂ ·
(
χ(i)∇̂χ(k) − χ(k)∇̂χ(i)

)
dV̂ =

∫
V̂per

(χ(i)∇̂2χ(k) − χ(k)∇̂2χ(i))dV̂

It follows from the definition of χ(i) (see (84)) that I = 0. If we now apply the divergence theorem
to I we find that

I = −
∫
∂Ω̂per

(
χ(i)∇̂χ(k) − χ(k)∇̂χ(i)

)
· ndŜ.

Referring to the boundary conditions on χ(i) on ∂Ω̂per contained in (84) and using the fact that
I = 0 leads to the result ∫

∂Ω̂per

χ(k)ei · ndŜ =
∫
∂Ω̂per

χ(i)ek · ndŜ,
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and hence by the result (92) to the desired result, namely (93).

Proof of (94). We can readily show that

−
∫
∂Ω̂per

χ(i)ei · ndŜ > 0

and thus that the trace of the diffusivity tensor is increased by the microstructure, as might be
expected. In order to see this consider multiplying (84) by χ(i) to show that

∇̂ · (χ(i)∇̂χ(i)) = |∇̂χ(i)|2
χ(i)∇̂χ(i) · n|∂Ω̂per

= χ(i)ei · n|∂Ω̂per

χ(i)∇̂χ(i) periodic in x̂ on V̂per

 for i = 1, 2, 3 (96)

Integrating the first of these equations over V gives∫
V̂per

|∇̂χ(i)|2dV̂ =
∫
∂V \∂Ω̂per

χ(i)∇̂χ(i) · ndŜ −
∫
∂Ω̂per

χ(i)∇̂χ(i) · ndŜ.

The first term on the right-hand side of this equations vanishes by periodicity. Applying the
boundary condition on ∂Ω̂per contained in (96) leads to

−
∫
∂Ω̂per

χ(i)ei · ndŜ =
∫
V̂per

|∇̂χ(i)|2dV̂ > 0.
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