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Abstract

Radio Frequency (RF) switches of Micro Electro Mechanical Systems
(MEMS) are appealing to the mobile industry because of their energy effi-
ciency and ability to accommodate more frequency bands. However, the elec-
tromechanical coupling of the electrical circuit to the mechanical components
in RF MEMS switches is not fully understood.

In this paper, we consider the problem of mechanical deformation of elec-
trodes in RFMEMS switch due to the electrostatic forces caused by the differ-
ence in voltage between the electrodes. It is known from previous studies of
this problem, that the solution exhibits multiple deformation states for a given
electrostatic force. Subsequently, the capacity of the switch that depends on
the deformation of electrodes displays a hysteresis behaviour against the volt-
age in the switch.

We investigate the present problem along two lines of attack. First, we
solve for the deformation states of electrodes using numerical methods such as
finite difference and shooting methods. Subsequently, a relationship between
capacity and voltage of the RFMEMS switch is constructed. The solutions ob-
tained are exemplified using the continuation and bifurcation package AUTO.
Second, we focus on the analytical methods for a simplified version of the
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4 Some studies on the deformation of the membrane in an RF MEMS switch

problem and on the stability analysis for the solutions of deformation states.
The stability analysis shows that there exists a continuous path of equilibrium
deformation states between the open and closed state.

4.1 Introduction

Radio Frequency switches (RF) of Micro Electro Mechanical Systems (MEMS)
have achieved considerable attention in the mobile industry because of the need for
an increase in frequency bands and energy efficiency. RFMEMS switches have sev-
eral advantages over traditional semiconductors such as power consumption, lower
insertion loss, higher isolation and good linearity. However, a thorough understand-
ing of the electromechanical coupling between the electrical circuit and mechanical
component of an RF MEMS switch is not fully established and this forms the sub-
ject of the present paper.

Problem description: RF MEMS switches typically consist of two electrodes
which are thin membranes parallel to each other as shown in the Figure 4.1. In
the schematic cross-section of the switch, Figure 4.1(a), the thick black lines indi-
cate the bottom and top electrodes in which the bottom electrode is fixed and the
top electrode is free to deform with its ends fixed. In the presence of equal and op-
posite electric charge Q in the electrodes, the top electrode deforms to balance the
electrostatic force Felectrostatic induced with its mechanical spring force Fspring for
equilibrium. To avoid the contact between the two electrodes, a dielectric of thick-
ness ddiel is provided on the top of the bottom electrode as indicated with dashed
lines in Figure 4.1(a). Further, the thickness of the top electrode is h and it is sepa-
rated by a distance g from the dielectric in the unforced state. The deformed shape
of the top electrode at equilibrium is described by the displacement u(x).
The equilibrium states are the critical points at which the the total energy is min-

imized. The total energy Etot is given by the sum of the electrical energy Eel and
the mechanical energy Emech:

Etot = Eel + Emech.

The electrical energy Eel is given as

Eel =
Q2

2C
with C(u(x, y)) :=

�

Abot

�0 dxdy

g + u(x, y) + ddiel/�diel
,

where C is the capacitance, Q the electric charge, u(x,y) the displacement, �0 the
vacuum permittivity coefficient, ddiel the thickness of dielectric, �diel the dielectric
constant and Abot the area of bottom electrode. In determining the capacitance
C , the two electrodes are assumed to be parallel under no charge in the unforced
state. Taking only the bending forces into account and assuming the thickness of
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the electrode to be very small with zero initial stress, the mechanical energy is given
by

Emech =

�

Atop

D

2
|�u|2 dxdy, where D =

2h3Y

3(1 − ν2)
,

h is the thickness, Atop area of the top electrode, Y is Young’s modulus and ν is the
Poisson ratio of the top electrode.

g

u

u(x)

x
Q

−Q

Fcontact
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�diel ddiel

h

(a) (b)

Figure 4.1: (a) Schematic cross-section of a capacitive RF MEMS switch. (b)
Scanned electron microscope picture of a capacitive RF MEMS switch.

Problem formulation: The main problem is the following: find all the displace-
ment states i of the top electrode ueq,Q,i (x, y) for which the forces on the top elec-
trode are in equilibrium at a fixed charge Q on the top electrode (or for a fixed
voltage V between the electrodes). Several sub-problems are posed as follows:

• Is there always a continuous path of equilibrium states ueq,Q,i (x, y) between
the open state ueq,Q,i = 0 for all x, y ∈ Atop and the closed state ueq,∞,N =
−g for all x, y ∈ Abot.

• Is there a function f (ueq,Q,i (x, y), Q) that is monotonically increasing along
this path?

• Can it be shown that along this continuous path dEmechdC > 0 is always
valid? Here Emech is the mechanical energy and C is its capacitance.

• Is there a simple way to determine whether a state is stable or unstable at a
fixed voltage or charge?

• For which geometries and boundary conditions is the problem analytically
solvable? Most interesting is the situation in which the top electrode springs
are clamped (zero displacement and zero slope) at some points of its bound-
ary.
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• The dynamics of the structure under the presence of gas damping is a related
interesting problem.

Finite element method: The deformation shapes at equilibrium are often solved
using finite element packages. However, it is not straightforward to find multiple
or all deformation shapes at equilibrium for a given voltage V as some of them are
unstable. Given the deformation shape of the electrode u(x, y), the capacitance of
the RF MEMS switch is determined. Such a CV -curve is shown for two examples
of RF MEMS switch in Figure 4.2(a) and (b). Multiple values of capacitance C for
a given voltage V are clearly seen in Figure 4.2; a phenomenon called hysteresis.

Overview: The equilibrium problem of a RF MEMS switch is interesting both
from a practical as well as a mathematical point of view. It should be stressed,
however, that the entire problem is too general and difficult. Hence, in the present
paper, we have considered a one dimensional version to obtain some interesting
insights and solutions.

First, we prove that under certain conditions on the total energy of RF MEMS,
the deformation states at equilibrium are stable. Second, we formulate an inequality
from which the stability conditions are derived. Third, we prove that when the
top electrode touches the dielectric, its deformation shape will have no gaps in the
contact area with dielectric. Finally, we prove the existence of a continuous path of
equilibrium states under some given mild conditions on the energy of the system.

Besides these theoretical results, we make use of numerical methods such as the
finite difference and shooting methods to solve for the displacements of the defor-
mation shape of the top electrode. To acquire insight into the nature of solutions, we
generate several sets of deformation shapes using the continuation and bifurcation
package AUTO. AUTO [3] typically generates sets of solutions to a given problem
by continuation, i.e., it calculates a solution for any given parameter of the system.
The main advantage of this approach as opposed to using finite element packages
is that the non-unique or multiple solutions for a given problem are easily found.
In addition, an article on modeling MEMS by using continuation is in preparation
(see [14]).

The paper is divided into two parts. In the first part, we present the numerical
methods to the present problem to gain some insight into the nature of solution.
We then employ the continuation method AUTO and a shooting method to generate
numerical solutions. In the second part, we discuss various analytical approaches
to the problem. We derive full solutions to the linearized problem. Linear problems
with any suitable boundary conditions have a unique solution and hence, no hys-
teresis is found. Finally, we present various other results for the nonlinear problem.
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(a)

(b)

Figure 4.2: Calculated CV -curve (capacitance-voltage characteristic) of two differ-
ent switches. (a) CV -curve of the switch of Figure 4.1. (b) CV -curve
of the so-called “seesaw” RF MEMS switch.
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4.2 Numerical Methods

4.2.1 Finite difference scheme

We consider a one dimensional model problem of the RF MEMS switch which
exhibits the important qualitative aspects of the system and its non-dimensional
form follows from the minimization of total energy:

∂4u

∂x4
= −

�0V
2

1− η + u
+ φ(u) on x ∈ [0, 1] (4.1)

with u =
∂u

∂x
= 0 at x = 0 and x = 1,

where u(x) is the displacement, η a small parameter, �0 the vacuum permittivity,
V the voltage between the electrodes and φ(u) the contact force between the plate
and the dielectric which is non zero for u < −1, i.e., when the scaled downward
displacement is greater than the scaled gap g = 1 between the electrodes.
A simple finite difference scheme for the 1D model problem (4.1) is developed

and implemented in MATLAB. The numerical solutions of this scheme are com-
pared to the analytical approximations and they can serve as a basis for more ad-
vanced 2D simulations in the future. To obtain the finite difference scheme, we first
divide the domain into n−1 grid cells with grid size �x and n grid points. The dis-
placement at each grid point xi is denoted as u(xi ) = ui . The biharmonic operator
in (4.1) is discretized using a central difference scheme as follows:

∂4u

∂x4
≈

ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

�x4
+O(�x2) i = 2, . . . , n − 1.

(4.2)

Near the boundaries, we employ the boundary conditions u1 = un = 0, u2−u0 = 0
and un+1 − un−1 = 0 which are second order central difference approximations to
the boundary conditions in order to get a consistent approximation. Substituting the
approximation of biharmonic operator (4.2) in (4.1), the finite difference discretiza-
tion takes the following form:

Au = −
�0V

2

1 − η + u
+ φ(u), (4.3)

where A is a constant matrix and u is the displacement vector at the points x =
xi , i = 2, . . . , n − 1. The discretized biharmonic operator A can be efficiently
inverted using an iterative solver such as conjugate gradient method (CG). However,
the right hand side of the equation is non-linear and hence, it is typically treated
with a fixed-point iteration. The fixed-point iteration scheme is easily described by
rewriting (4.3) as follows:

uk+1 = A−1

�

−
�0V

2

1 − η + uk
+ φ(uk)

�

. (4.4)
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Now given a guess uk for displacement u, we compute for displacement uk+1 using
(4.4) per grid cell and iterate with respect to k until the solution converges. From
a physical point of view, it is clear that the equation is not uniquely solvable for
a certain range of voltages V . In fact, this is reflected in the fixed-point iteration
scheme as it could converge to two different solutions for the displacement vector.
Typically, the solution to which it converges depends on the starting point for the
iteration. This suggests that a CV -curve with stable solutions of the system can be
drawn. To draw the CV -curve, we start with a low voltage V for which the solution
is unique and stable. Subsequently, we increment voltage V and use the previous
solution as the starting for the fixed-point iteration scheme which resulted in a quick
convergence to the nearby solution. Similarly, to obtain the remaining branch of
solutions, we started with a high voltage V and repeated the previous procedure by
decreasing the voltage V . This has lead us to construct a “continuous” branch of
the CV -curve.

4.2.2 Shooting method

In this section, we consider a shooting method to solve the nonlinear one dimen-
sional model problem of RF MEMS switch. The shooting method in some sense
is the easiest method to find numerical solutions for a boundary value problem of
a nonlinear ordinary differential equation. It relaxes the problem by ignoring one
of the boundary conditions and replacing it by a “free” initial choice instead. This
initial choice is adapted until the obtained solution satisfies the boundary condition
that was ignored. We refer to [11] for a detailed description of the shooting method.

We distinguish three situations for the shooting method:

1. The top electrode touches the dielectric over some interval.

2. The top electrode touches the dielectric at one point.

3. The top electrode does not touch the dielectric.

Each of these cases contribute to different parts of the CV -curve. We describe the
shooting method in detail for the first situation, i.e., when the plate touches the
dielectric on some interval, and solve the shooting problem. The remaining two
situations are solved analogously and hence, we omit the description. Finally we
compute the CV -curve according to

C(v) =
��0

g

� 1

−1

dx

1 + u(x ; v) − η
. (4.5)

For all computations, we employ MATHEMATICA 6.
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Electrode touches dielectric over some interval

Because of symmetry, we consider the electrode membrane in the half interval [0, 1]
and take that the membrane touches the dielectric at x = a, where a is the distance
measured from the fixed end x = 0 of the membrane and 0 ≤ a < 1. The nonlinear
differential equation describing the shape of the membrane u(x) between the fixed
end and the contact with the dielectric is

∂4u

∂x4
= u���� = −

�0V
2

1− η + u
, (4.6)

with boundary conditions

u(1) = 0, u�(1) = 0, u(a) = −1, u�(a) = 0, u��(a) = 0. (4.7)

Here, an additional condition u(a) = −1 is required for the unknown contact point
at x = a on the dielectric.
It is convenient to make a change of variable x to x̃ = x − a, ũ(x̃) = u(x).

Consequently, boundary conditions (4.7) now become as

ũ(1−a) = 0, ũ�(1−a) = 0, ũ(0) = −1, ũ�(0) = 0, ũ��(0) = 0, (4.8)

and (4.6) remains the same as

ũ���� = −
�0V

2

1− η + ũ
. (4.9)

In order to solve (4.6) and (4.7), we study the initial value problem for (4.9) with
initial conditions

ũ(0) = −1, ũ�(0) = 0, ũ��(0) = 0, ũ���(0) = P, (4.10)

which has a solution ũ(x̃ ; P) with P an unknown parameter to be found later. Now,
it remains to find a solution P = Ps such that the solution of (4.9) and (4.10)
satisfies the following condition at some point b > 0:

ũ(b; Ps) = 0, ũ�(b; Ps) = 0. (4.11)

Setting a = 1−b, we obtain the solution u(x) = ũ(x̃ ; Ps) satisfying (4.6) and (4.7).
Note that, for the case b > 1 a solution of (4.6) and (4.7) does not exist.
The function ũ(x̃ ; P) increases as function of P , see Figure 4.3(a). For small

P , ũ(x̃ ; P), as a function of x̃ , increases, reaches a negative maximum and then
decreases, see curves below the red one in Figure 4.3(a). For larger P , ũ(x̃ ; P)

increases and has positive first derivative where it crosses the line ũ = 0 for the first
time, see curves above the red one in Figure 4.3(a). For P = Ps the function ũ(x̃ ; P)

has a local maximum ũ = 0 (the red curve in Figure 4.3(a). This function satisfies
the conditions (4.11) and b is the value of x̃ at which ũ has the local maximum.
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ũ(x̃ ; Ps)

P increases

x

ũ(x̃ ; P)

(a)

x

u(x)

(b)

Figure 4.3: (a) The function ũ(x̃ ; P) for different values of the shooting parame-
ter P and V = 890. Here, ũ(x̃ ; P) increases as P increases. The
red curve corresponds to a solution ũ(x̃ ; Ps) which satisfies (4.11) and
solves (4.6) and (4.7). (b) The membrane shape for different values of
V . The red line depicts a part of membrane in contact with dielectric.
The blue curve is the shape of the membrane between the support and
the dielectric.
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Next, we present an alternative method for solving (4.6) and (4.7). This method is
convenient for fast construction of a CV -curve because it requires solving a bound-
ary value problem only once. Then using a scaling argument we get an easily cal-
culable expression for C .
First we rescale x̃ according to x̂ = x̃/(1 − a) and û(x̂) = ũ(x̃) . Then the

boundary value problem (4.6) and (4.8) becomes

û���� = −
�0V

2(1 − a)4

1 − η + û
, (4.12)

û(1) = 0, û�(1) = 0, û(0) = −1, û�(0) = 0, û��(0) = 0. (4.13)

To solve (4.12) and (4.13) using the shootingmethod routine implemented in MATH-
EMATICA 6 we rewrite (4.12) as follows

û����(x̂) = −
�0V̂ (x̂)2

1− η + û(x̂)
, V̂ �(x̂) = 0. (4.14)

Here the unknown V 2(1− a)4 is described as an unknown constant function V̂ (x̂).
A solution û(x̂) and V̂ (x̂) = Vs of (4.14) describes the shape of the membrane
u(x) = û(x) for a = 0, and Vs is the minimum value of V for which (4.6) and (4.7)
has a solution. A solution u(x) for arbitrary V > Vs is written as

u(x) = û((x − a)/(1 − a)), a = 1 −

�
Vs

V
.

The shape of the membrane is

u(x) =

�
û((|x | − a)/(1 − a)), for a < |x | ≤ 1,
−1, for |x | ≤ a,

see Figure 4.3(b).
With increasing V the contact with the dielectric increases and the membrane

shape between the support and the dielectric becomes steeper.
The value of C is computed from (4.5) as

C(V ) =
2��0

g

�
1 −

√
Vs/V

η
+

�
Vs

V
I1

�

, where I1 =

� 1

0

dx̂

1 + û(x̂) + η
,

from which follows that C(V ) has a horizontal asymptotic

lim
v→∞

C(V ) =
2��0

gη
. (4.15)
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A

B

C

V

Figure 4.4: CV -curve for all three cases. The membrane first touches the dielectric
at the point A. The change between the situations when the membrane
touches the dielectric at one point, and on some interval is indicated by
the point B.

CV -curve and influence of model parameters

Summarizing the results of the CV -curves for all three situations, we construct the
CV -curve for all V , see Figure 4.4. The complete CV -curve has discontinuous
derivative at the transition point when the membrane touches the dielectric for the
first time (point A in Figure 4.4). At the transition between the situations when
the membrane touches the dielectric at one point and on some interval (point B
in Figure 4.4), the CV -curve is C1. For some interval of V three values of C
are possible (see Figure 4.4). This is a consequence of the non-uniqueness of the
solution to the original problem for u.

4.3 The continuation problem

AUTO is a software package that is used for finding and displaying solutions, and
tracking bifurcations of solutions of ordinary differential equations (ODEs) by con-
tinuation of some system parameter.8 A bifurcation is, loosely formulated, a sudden
change in the qualitative behaviour of ODEs when some system parameter (or bi-
furcation parameter) crosses a certain threshold (the critical value). For example,

8The package has been developed initially by E. Doedel and subsequently expanded by a range of
authors, see [3]
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an equilibrium solution may loose stability when the bifurcation parameter crosses
a critical value. For more on the notion of bifurcation, see [6].
By continuation we mean the process of changing this system parameter and

calculating the deformation of a solution when this parameter is changed. A typical
continuation starts out with some (acquired) solution for the system with a certain
value for the system parameter. Then the parameter is changed, and the solution
is calculated for each value of the parameter. AUTO also detects bifurcations when
they take place. So, in order to do a continuation, one has to find one solution
for a specific value of the bifurcation parameter (often zero is a smart choice). By
changing a parameter (i.e. by a continuation in one of the parameters) the solution
generically changes as well. This solution can be found by AUTO, for each value of
the bifurcation parameter.
Most continuation software, and especially AUTO, allows for continuation in two

or more parameters as well. AUTO is not only able to perform continuation of equi-
libria to ODEs, but also the continuation of periodic solutions of ODEs, fixed points
of discrete dynamical systems, and even solutions to partial differential equations
(PDEs) that can in some sense be transformed to ODEs, like spatially uniform so-
lutions (i.e. solutions that do not depend on any spatial variable) of a system of
parabolic9 partial differential equations (parabolic PDEs), travelling wave solutions
to a system of parabolic PDEs, and even more.
It is presently not of our interest how AUTO finds this solution. For convenience,

we only note here that all continuation methods basically rely upon some version of
Newton’s method (and therefore the Implicit Function Theorem).
We want to stress that continuation always leads to a (discretized) continuum

of solutions. This is an advantage with respect to the other numerical methods we
described so far. Moreover, a continuation and bifurcation package such as AUTO is
able to detect bifurcations of the system as well. This is the second main advantage.
We show the method of continuation applied to our equilibrium problem which

consists of a nonlinear ordinary differential equation which is difficult to solve an-
alytically. The nonlinear differential equation for which the voltage V and capaci-
tance C are calculated, reads

∂4u

∂x4
= −

V 2

2

�0

(u + d/�)2
+ αk1e

−k2u (4.16)

with u�(0) = u�(1) = u(0) = u(1) = 0 and α a dummy parameter to switch
between nonlinear α = 1 and linear problem α = 0. Setting α = 0, the associated
linear problem is obtained as

∂4u

∂x4
= −

V 2

2

�0�

d
(4.17)

with u��(0) = u��(1) = u(0) = u(1) = 0.

9We do not explain the notion of a parabolic PDE here; it is of no importance to us. But see any
introductory text on partial differential equations
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By solving the above linear equation, AUTO knows a solution of the “nonlinear”
problem for α = 0. By continuation in α, it subsequently finds solutions for the
nonlinear problem with α �= 0. For each of these solutions the capacitance C and
voltage V are calculated and a CV -curve is plotted in Figure 4.5. The CV -curve in
Figure 4.5 exhibits a hysteresis behaviour.

0.00 2.00 4.00 6.00 8.00 10.0

0.00

10.0

20.0

30.0

C

V

Figure 4.5: CV -curve generated by AUTO.

4.4 Analytical results

4.4.1 The linearized problem

It is possible to fully solve the linearized problem for three different cases: (i) the
case in which the membrane does not touch the dielectric at all (ii) the case in which
the membrane touches the dielectric in one point only and (iii) the case in which the
membrane touches the dielectric on an interval. Since most linear problems have
unique solutions, it is clear from the outset that the typical hysteresis behaviour does
not show up in the linearized model. Some of those calculations may nevertheless
be of interest, we have placed a summary of the linearized problem in the appendix

4.4.2 Collected analytical results

We prove some results for a functional E that may be interpreted as the total energy.
The functional can be written as an integral over some domain � in R

2. To read
this section, it might be necessary to consult a text on variational methods, see for
example [4] or [5].
First, it is proved that the solution for the membrane cannot touch the dielectric

“with holes”, i.e. in one dimension, the membrane is stuck to the dielectric between
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every two points where the membrane touches it. Second, it is derived that every
critical point u for which u = 0 on some open set �1 ⊂ �, has �u = 0 on
∂�1. Third, we prove that stationary solutions for the energy E for which it holds
that dC/dV < 0 are necessarily unstable. The final result is argued but still not
completely proved. It states that if for both large V and small V a unique critical
point exists, then under some conditions on the energy functional, a continuous
family of solutions connects the two solutions.
Just for notation’s sake: the main functional we consider is

E =
D

2

�

�

u��2 −
V 2

2

�

�

�0

(u + d/�)
+

�

�

k1e
−k2u, (4.18)

where � is a domain (e.g. a rectangle, or a circle) in R
2 or an interval in R, depend-

ing on the question considered. The second integral is the capacity

C =

�

�

�0

(u + d/�)
.

The boundary conditions are u = g and ∂u/∂n = 0 on ∂�. Unless stated otherwise,
all integrals are over �.

Short list of results

1. For any minimizer (or general critical point) u of the infinitely-hard bottom
problem

min
�D

2

�

�2u −
V 2

2
C

�
�
� u ≥ 0

�
(4.19)

there exists no nonempty open sets �1 ⊂ � satisfying u|�1 > 0 and u|∂�1 =
0. In particular, in dimension n = 1, the contact set {x ∈ � | u(x) = 0} is a
(possibly empty) interval; in two-dimensions it means that the contact set has
only simply connected components (no rings).

2. If u is minimizer of (4.19), or more generally a critical point, then if u = 0
on an open set �1 ⊂ �, then �u = 0 on ∂�1 (also of course on the interior
of �1).

3. Stationary points of E lying on a branch for which dC/dV < 0, are neces-
sarily unstable. That is, there exists a perturbation w such that

E ��(u) · w · w < 0.

More generally, consider energies of the form

F(u,C, V ) =

�

f (x, u, ∇u, �u, . . . )dx + G(V,C),
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where C =
�
c(u(x))dx and V is a parameter (the Voltage for example).

Then if ∂2G/∂C∂V < 0, any solution lying on a branch for which dC/dV <

0, is unstable.

4. The last result is more tentative; it should be true, but requires additional
work to prove: if there exists a unique critical point of E both for small
V and for large V , and provided that some type of coercivity holds for the
energy functional (4.18), then there exists a continuous family of solutions
connecting these two.

Sketches of the proofs

Ad 1 In 1D: let u be a stationary point, satisfying, where u > 0,

−Du���� =
�0

(u + d/�)2
. (4.20)

Note that the right hand side of (4.20) is strictly positive. Suppose u has two contact
points x1 < x2. Since u(xi ) = u�(xi ) = 0 and u ≥ 0, we must have u��(xi ) ≥ 0.
Furthermore, −(u��)�� > 0 and it follows from the maximum principle that u��(x) ≥
min{u��(x1), u

��(x2)} ≥ 0 for x ∈ (x1, x2). This implies, again by the maximum
principle, that u ≤ 0 on (x1, x2). We thus conclude that u ≡ 0 on [x1, x2].
In more dimensions exactly the same (pair of maximum principle) arguments

prove that the contact region can have no holes, as asserted.

Ad 2We do not give a full proof, but illustrate the main idea. On a one-dimensional
domain � = [−L , L], let uR(x) be a smooth family of symmetric solutions with
“forced” contact region [−R, R], with R < L . By symmetry, we only need to
consider the left half of the solution:






−Du����
R = �0

(uR+d/�)2
for − L < x < −R,

uR(−L) = g, u�
R(−L) = 0,

uR(−R) = 0, u�
R(−R) = 0.

Now, uR is a critical point of E if and only if dE(uR)/dR = 0.

Writing E(u) =
�
�

D
2 u

��2 + g(u)dx , where g(u) = −V 2

2
�0

(u+d/�)
+ k1e

−k2u , we
obtain

E(uR) = 2

� −R

−L

D

2
u��
R
2
dx + 2

� −R

−L
g(uR)dx + 2Rg(0).

Calculating this derivative with respect to R we infer that

dE(uR)

dR
= Eu(uR)

∂uR

∂R
−Du��

R
2
(−R)−2g(uR(−R))+2g(0) = −Du��

R
2
(−R),

since uR(−R) = 0 and Eu(uR) = 0, because uR is a critical point when keeping R
fixed. It follows that u��(−R) = 0 if u is a critical point of E .
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This argument can be extended to higher dimensions quite easily, under the as-
sumption that the solution for fixed contact region varies smoothly with the geom-
etry of the contact region. Without this assumption, more complicated arguments
are needed.

Remark 4.4.1. We note that if the contact set is a single point, then the second
derivative in this point need not be zero. Indeed, in one dimension for example,
there is a branch of solutions with contact only in the midpoint of the domain (in-
terval) and with varying second derivative.

Ad 3 Let us first give the argument for the specific energy E in the one-dimensional
case. Consider

D

2

�

u��2 −
V 2

2

�
�0

(u + d/�)
+ k1e

−k2u .

Let us look at stationary points, i.e., solutions of

Du���� = −
V 2

2

�0

(u + d/�)2
+ k1k2e

−k2u, (4.21)

which are, on the branch under consideration, parametrized by V . Let us write u
for the derivative of the solutions u with respect to V along the branch. Taking the
derivative of (4.21) along the branch, we obtain

Du���� = V 2 �0u

(u + d/�)3
− V

�0

(u + d/�)2
− k1k

2
2e

−k2uu. (4.22)

The second variation of the energy in the direction u gives

E ��(u) · u · u = D

�

u��2 − V 2

�
�0u

(u + d/�)3
+ k1k

2
2

�

e−k2uu2.

After performing partial integration twice on the first term, we can substitute (4.22)
and, with most terms cancelling, we obtain

E ��(u) · u · u = −V

�
�0u

(u + d/�)2
.

This simplifies as

E ��(u) · u · u = −V

�
�0u

(u + d/�)2
= VC �(u)u = V

dC

dV
.

Hence dC
dV < 0 implies that u is unstable.

For the general case, critical points u = u(V ) satisfy, subscripts denoting partial
derivatives,

Fu(u(V )) · w + GC(V,C(u(V )))Cu(u(V )) · w = 0 for any w.
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Taking the derivative with respect to V gives (always evaluating at u = u(V )),

Fuu ·w ·uV +GCV Cu ·w+GCC Cu ·wCu ·uV +GC Cuu ·w ·uV = 0 for any w.

(4.23)

On the other hand, the second variation (for fixed V ) gives

F ��(u) · w · w� = Fuu · w · w� + GCC Cu · wCu · w� + GC Cuu · w · w�,

hence, using (4.23), we obtain for w = w� = uV

F ��(u) · uV · uV = −GCV Cu · uV .

When we write C(V ) = C(u(V )), this reduces to

F ��(u) · uV · uV = −GCV
dC

dV
.

Hence, if ∂2G/∂C∂V < 0 then solutions on branches where dC/dV < 0 are
always unstable.

Remark 4.4.2. One can also consider the problem where we put a charge Q = VC
on the switch. In that case the physically relevant energy does not include the energy
stored in the battery, which is given by −V 2C . The energy EQ thus becomes

EQ =
D

2

�

u��2 +
Q2

2C
+

�

k1e
−k2u,

and the arguments above show that solutions on curves with dC/dQ < 0 are always
unstable.

Ad 4 Such a result follows from degree theory, see e.g. [8]. However, it still needs
to be checked rigorously that there indeed does exist a unique critical point for very
large and very small V . For V = 0 this is obvious, the energy being convex in that
case, but the situation for large V is less straightforward, since the energy contains
both convex and concave parts, although in numerical experiments uniqueness is
observed.

4.4.3 Functional estimates

In this section, two estimates for the first and second variation of the total energy
are derived.
The energy functional modeling the deformation of a clamped plate � under

influence of an electrical field due to a potential difference with a fixed plate reads

E[u] = Emech + Eel

=

�

�

�
1

2
D(�u)2 −

1

2
V 2 ε0

u + g + d
ε0

�

dxdy, (4.24)
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where u ∈ H2
0 (�), implying u = ∂u

∂n = 0 on ∂�. Equilibria for the system are the
zeroes of the first variation,

δE[ũ, h] = 0, ∀h ∈ H2
0 (�).

These can be stable and unstable equilibria (e.g. saddle points). A stable equilibrium
is a minimum of the functional. Such states are characterized by the fact that the
second variation at the equilibrium state is strictly positive,

δ2E[ũ, h] > 0, ∀h ∈ H2
0 (�)

We here wish to give a sufficient condition for an equilibrium to be stable.
The first variation is found by putting u = ũ + εh, where h ∈ H2

0 (�) is a test
function, and taking the derivative with respect to. ε at ε = 0. We then obtain

δE[ũ, h] =

�

�

�

D�2ũ +
1

2
V 2 ε0

(u + g + d
ε0

)2

�

h dxdy.

The variation lemma yields the boundary value problem for the system from this
functional. Let us assume we have a solution for the system. Now the question
is whether the solution is stable or not. The second variation in the direction h ∈
H2
0 (�) is found to be

δ2E[u, h] =

�

�

�

D(�h)2 − V 2 h2ε0

(u + g + d
ε0

)3

�

dxdy. (4.25)

In this form it is difficult to check positivity. However, we can prove a Cauchy-type
inequality for the test functions in the space H2

0 (�)when � has a simple shape. For
the case of a rectangle with sides L1 and L2 we have

�

�

(�h)2dxdy ≥
4

max[L41, 2L
2
1L

2
2, L

4
2]

�

�

h2dxdy

Using this inequality together with equation (4.25) we have the following estimate
for the second variation,

δ2E[u, h] ≥

�

�

�
4D

max[L41, 2L
2
1L

2
2, L

4
2]

− V 2 ε0

(u + g + d
ε0

)3

�

h2dxdy

Necessary conditions for the stability of the functional can be obtained from this
estimate. For example, take u∗ = min(u), then

δ2E[u, h] ≥

�
4D

max[L41, 2L
2
1L

2
2, L

4
2]

− V 2 ε0

(u∗ + g + d
ε0

)3

� �

�

h2dxdy,

and it is sufficient to check the positivity of the constant.
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Appendix

As said in section 4.4.1, the linearized problem can be fully elaborated for three
different cases: (i) the case in which the membrane does not touch the dielectric at
all (ii) the case in which the membrane touches the dielectric at x = 0 only and (iii)
the case in which the membrane touches the dielectric on an disc B̄a, for 0 < a < 1.
We will make a few remarks on how to do this, in the case of a radially symmetric
MEMS switch. We consider case (iii). It will be clear from the result that the typical
hysteresis behaviour does not show up in the linearized model.

To focus on the right parameter combinations in the problem, we rescale it. For
example, in the 2-D radially symmetric version of the problem one obtains for the
capacitance:

C(w) =
2π�0�

2

g

� 1

0

r

1 + η + w(r)
dr.

and, by computing the Euler-Lagrange equation corresponding to this energy we
find

�2
rw = −

δv2

(1+ η + w)2
. (4.26)

where �r = 1
r

d
dr , δ some algebraic expression in terms of the other parameters, v a

non-dimensionalized voltage andw a scaled version of the distance u. This problem
can subsequently be linearized around w = 0:

�2w = ω4

�

−
1 + η

2
+ w

�

,

where ω = 4

�
2�v2

(1+η)3
is just a scaling. Regarding w as a radially symmetric function

depending on r only we get

w(r) = AJ0(ωr) + BY0(ωr) + C I0(ωr) + DK0(ωr) +
1 + η

2
, (4.27)

where J0 and Y0 are Bessel functions of the first and second kind respectively and
I0 and K0 are modified Bessel functions of the first and second kind. We add the
following boundary conditions:

w(1) = w�(1) = w�(a) = w��(a) = 0, w(a) = −1.

By rewriting this system as a four-dimensional first-order system, one obtains the
constants A, B,C and D.
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