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Section 1: Introduction

The problem addressed in this report is that of pricing multi-name credit derivatives.
These are default guarantee contracts on a basket of “names” whose default rates are
correlated.

To understand the usefulness of such derivatives and the main difficulties in pricing
them, we briefly describe their main characteristics and reasonable assumptions that can
be made in formulating a pricing method for multi-name credit derivatives.

The type of contract that we wish to address is the following: An investor desires to
invest in bonds of a basket of names, but wants to be protected in the event of default. One
examples of default protection is the “first-to-default” guarantee, which pays only the loss
associated with the first name in the basket to default. In the case of traunche guarantee

protection for CDO (consolidated debt options) or CLO (consolidated loan options), the
protection pays off only if enough of the underlying commercial mortgages default to hurt
the guarantee traunche of the bond.

The main difficulty in pricing and hedging multi-name deals is the lack of good joint
credit models that account for the correlations in the credit worthiness of the names.

Let f(t, T ) be the forward rate for T as seen at t, and r(t) = f(t, t) be the short rate.
Let

Z(t, T ) = e
−
∫

T

t
f(t,τ) dτ

= value at t of $1 paid at T .

The discount factor is

D(T ) = Z(0, T ) = today’s value of $1 paid at T .

By the fundamental theorem of no-arbitrage finance, there is a probability measure such
that the value V (t) of any deal is

V (t) = E

{

e
−
∫

T

t
r(τ) dτ

V (T )

∣

∣

∣

∣

t

}

if there are no cash flows. In other words, the value at time t is the value at time T
discounted for the period t < τ < T . If there are cash flows C(t) that are paid out over
time, then those must be discounted as well, and we have

V (t) = E

{

e
−
∫

T

t
r(τ) dτ

V (T ) +

∫ T

t

e
−
∫

T ′

t
r(τ) dτ

C(T ′) dT ′

∣

∣

∣

∣

∣

t

}

.

Let

Qj(t, T ) = probability that company j has not defaulted at T as seen at t.
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Then
Q0

j(T ) = Qj(0, T ) = today’s probability that j as not defaulted at T .

It is assumed that all default probabilities are independent of interest rates. Then the no
default risk value of $1 to be paid at T is

Z(t, T ) = E{ e
−
∫

T

t
r(τ) dτ

$1 | t }.

Consider a bullet bond on company j. In such a bond, a coupon (interest) amount ci is
paid at ti , i = 1 . . . n− 1, if the company does not default on or before ti , and 1 + cn (the
last coupon plus the original $1 investment) is paid on tn if the company does not default
on or before tn. In case of default, the bond has a recovery value of w paid on ti if default
occurs in ti−1 < t ≤ ti . The value of the bond today (to the holder) is

Vbond(0) =

n
∑

i=1

ciD(ti)Q
0
j(ti) + D(tn)Q0

j(tn) + w

n
∑

i=1

D(ti)[Q
0
j(ti−1) − Q0

j (ti)]

Examples of credit derivatives on a single name are:
• Default guarantee on company j for t0 < t < tm. This stipulates that a fee ai is paid

at ti , i = 1 . . .m if the company does not default on or before ti, and 1 − w is paid
to the client if company j defaults in ti−1 < t ≤ ti . Today’s value of this guarantee
(to the guarantor) is

Vguar(0) =
m
∑

i=1

aiD(ti)Q
0
j (ti) − (1 − w)

m
∑

i=1

D(ti)[Q
0
j(ti−1) − Q0

j(ti)].

• Digital guarantee. This is a special case of the default guarantee. Here the guarantor
does not retain any portion w of the bond amount on default, and instead the bond-
holder is refunded the full value of the bond. Thus we take w = 0 in the above to
obtain

Vguar(0) =

m
∑

i=1

aiD(ti)Q
0
j(ti) −

m
∑

i=1

D(ti)[Q
0
j(ti−1) − Q0

j(ti)].

Examples of multi-name derivatives are:
• Basket protection for t0 < t < tm written on names j = 1, 2, . . . J . Under this contract,

a fee ai is paid at ti , i = 1 . . .m if no company defaults on or before ti, and 1−wj is
paid to the client if company j defaults in ti−1 < t ≤ ti and j is the first to default.

• Traunche protection for CDO and CLO. This is similar to the basket protection de-
scribed above, except that the fees ai continue to be paid until enough companies in
the basket default to trigger the payout.



Section 2: Credit Derivatives

We begin by deriving the price for a default guarantee contract, more specifically a
guarantee on a single company. Suppose that a client wishes to invest in the bonds of a
company, but wants some amount of insurance against issuer default. Such an investor
may purchase a default guarantee from an investment firm.

Let ti, i = 0, 1, . . . , M be the dates on which interest payments are supposed to be
paid by the issuer, and also let us normalize to consider a bond with principal amount 1.
(All quantities scale linearly with the principal.) The investor pays the investment firm a
premium φi on ti when the issuer pays the interest. (We assume that the interest due and
premium due dates are the same for simplicity, though in practice if the investment firm
is handling the bond purchase, the premium may simply be deducted from the interest
payments.)

However, if the issuer defaults in the interval (ti−1, ti], then the issuer won’t make the
interest payment on ti, and the investment firm must pay the investor an amount 1 − w.
Here w is some amount (usually taken to be 0.2 to 0.25) that the investor should be able
to recoup from the company during a bankruptcy proceeding, and hence the two payments
together sum to the original principal amount 1. In summary, from the investment firm’s
point of view, it will

• receive φi at time ti if the company (numbered 0) doesn’t default by ti
• pay 1 − w at time ti if company 0 defaults in (ti−1, ti].

Let τ0 be the time at which company 0 defaults. Then we define the survival probability

distribution function Q0(t) for company 0 in the following way:

Q0(t) = probability that company 0 hasn’t defaulted by time t

= P (t < τ0). (2.1)

We note that given this definition, the probability that the company defaults in (ti−1, ti]
is given by

P (ti−1 < τ0 ≤ ti) = P (ti−1 < τ0) − P (ti < τ0) = Q0(ti−1) − Q0(ti). (2.2)

Thus, the value V0 of the guarantee today (always taken to be t = 0) is given by

V0 =

M
∑

i=1

(present value of φi paid at time ti)Q0(ti)

−
M
∑

i=1

(present value of 1 − w paid at time ti)[Q0(ti−1) − Q0(ti)]. (2.3)
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To calculate the present value of an amount of money payable at time t, we multiply by
the discount factor D(t). Thus, (2.3) becomes

V0 =
M
∑

i=1

φiD(ti)Q0(ti) −
M
∑

i=1

(1 − w)D(ti)[Q0(ti−1) − Q0(ti)]

=

M
∑

i=1

D(ti) [(1 + φi − w)Q0(ti) − (1 − w)Q0(ti−1)] . (2.4)

Since the discount factor is assumed known, the problem boils down to determining Q0(t)
for the company.

If investors wish to insure the bonds for n companies, there are several types of
protection they can buy. We wish to focus on first-to-default protection. Here the premium
is paid if all the companies make their interest payments. Otherwise, if company j defaults,
1−wj is paid by the investment firm, and the policy terminates. Note that if two companies
default in the same time frame, only one payout is made. In practice, the payout is made
immediately upon default.

Thus the bulleted text above is replaced by

• receive φi at time ti if no company has defaulted by ti
• pay 1 − wj at time ti if first default (by company j) is in (ti−1, ti].

We now must redefine some terms to obtain the form analogous to (2.4). Let τj be the
time at which the jth company defaults. Then we define Q(t), the joint survival probability

distribution function, in an analogous way to the above as follows:

Q(t) = probability no company has defaulted at time t

= P (t < τj ∀j). (2.5)

Next we define the probability that company j has not defaulted in the interval [0, t], but
that when it does default, it will be the first:

Qf
j(t) = P (t < τj and τk > τj ∀k 6= j), (2.6)

where the superscript ‘f’ refers to ‘first.’ We note that given this definition, the probability
that company j has defaulted in the interval (ti−1, ti], and that it is the first to default is
given by

P (ti−1 < τj ≤ ti and τk > τj ∀k 6= j) = P (ti−1 < τj and τk > τj ∀k 6= j)

− P (ti < τj and τk > τj ∀k 6= j)

= Qf
j(ti−1) − Qf

j(ti). (2.7)

When valuing the contract, we must now consider that any of the n different companies
might default first, and depending on which does, we have a different payout function.
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Thus (2.4) becomes

V =
M
∑

i=1

φiD(ti)Q(ti) −
M
∑

i=1

D(ti)
n
∑

j=1

(1 − wj)[Q
f
j(ti−1) − Qf

j(ti)]

=
M
∑

i=1

D(ti)







φiQ(ti) −
n
∑

j=1

(1 − wj)[Q
f
j(ti−1) − Qf

j(ti)]







. (2.8)

Equation (2.8) simplifies somewhat in the case where wj = w ∀j:

V =
M
∑

i=1

D(ti)







φiQ(ti) − (1 − w)
n
∑

j=1

Qf
j(ti−1) − Qf

j(ti)







. (2.9)

However, we note that

Q(t) = P (t < τj ∀j) =

n
∑

j=1

P (t < τj and τk > τj ∀k 6= j) =

n
∑

j=1

Qf
j(t),

where we assume that the probability of two companies defaulting at the same time is
zero. Substituting this result into (2.9), we have

V =

M
∑

i=1

D(ti) {φiQ(ti) − (1 − w)[Q(ti−1) − Q(ti)]} ,

which is exactly in the form of (2.4), though now Q refers to a probability under a joint

survival function. The remainder of this report deals with constructing appropriate forms
for Q given forms for the Qj ,

Qj(t) = P (t < τj) .

This is the probability of company j defaulting if none of the other companies were con-
sidered in the analysis (the marginal survival probability distribution).



Section 3: (Too) Simple Models

The discount factor is usually derived by introducing the instantaneous forward rate

f(t). If you invest $1 at time t, then you will receive ef(t) dt at time t+dt. Then continually
re-investing the money throughout the time period [0, t], one has that at the end of the
period the

future value at t of $1 invested now = exp

(
∫ t

0

f(ξ) dξ

)

.

(Here f is a deterministic function because the rate is locked in once the contract is signed.)
Thus by simply saying that we know the future value, we have that

(present value of $1 payable at time t) = D(t) = exp

(

−
∫ t

0

f(ξ) dξ

)

. (3.1)

In order to use the survival probability results easily on computer systems designed to
handle discount calculations, one can define the default rate h(t) in the following way:

Q(t) = exp

(

−
∫ t

0

h(ξ) dξ

)

. (3.2)

This then relates the probability Q(t) to a Poisson process, which models waiting times,
time to failure (which of course is directly analogous to our case), etc. Similarly, we can
define a default rate for company j through the relationship

Qj(t) = exp

(

−
∫ t

0

hj(ξ) dξ

)

. (3.3)

If the default rates of the companies are independent of each other, then we know that

P (t < τj ∀j) =
n
∏

j=1

P (t < τj)

Q(t) =

n
∏

j=1

Qj(t)

exp

(

−
∫ t

0

h(ξ) dξ

)

=
n
∏

j=1

exp

(

−
∫ t

0

hj(ξ) dξ

)

h(t) =

n
∑

j=1

hj(t). (3.4)
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We call (3.4) the independent default approximation.
We begin by considering the case where hj is a constant, and we have only two

companies. Then if the default rates are independent, we have

Qj(t) = e−hjt, j = 1, 2, (3.5a)

Q(t) = e−(h1+h2)t. (3.5b)

Motivated by the simple form of (3.5b), we tried to introduce expressions for Q(t) similar
in form to (3.5b) but which included the relationship between the defaults of companies 1
and 2. To examine the effect, we let Xj be the following indicator variable:

Xj =

{

1, if company j has not defaulted (probability Qj(t))
0, else.

(3.6)

Then to quantify the relationship between defaults, we define the conditional probability
Qc

j(t) by

Qc
j(t) = P (company j hasn’t defaulted given that all others haven’t).

Therefore, for the two-company case, we have

Qc
1(t) = P (X1 = 1|X2 = 1) =

P (X1 = 1, X2 = 1)

P (X2 = 1)
=

Q(t)

Q2(t)
, (3.7a)

Qc
2(t) =

Q(t)

Q1(t)
. (3.7b)

From (3.5) clearly we have that in the independent case, Qc
1(t) = Q1(t) and Qc

2(t) = Q2(t).
Given any two variables X1 and X2, their correlation coefficient ρ(X1, X2) is given by

E(X1X2) = E(X1)E(X2) + ρ(X1, X2)
√

σ2
1σ2

2 , (3.8)

where σj is the standard deviation of Xj . (In the financial parlance, σj is called the
volatility.) Using basic facts about indicator variables, we have

P (X1 = 1 and X2 = 1) = P (X1 = 1)P (X2 = 1)

+ ρ(X1, X2)
√

P (X1 = 1)[1 − P (X1 = 1)]P (X2 = 1)[1 − P (X2 = 1)].

Then using the known relationships between the probabilities and the Qs, we have

Q(t) = Q1(t)Q2(t) + ρ(X1, X2)
√

Q1(t)Q2(t)[1 − Q1(t)][1 − Q2(t)]

ρ =
Q(t) − Q1(t)Q2(t)

√

Q1(t)Q2(t)[1 − Q1(t)][1 − Q2(t)]
.
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In each of our attempts at modeling a form for Q(t), we want to keep the Poisson form for
the companies treated separately. Thus we retain (3.5a), which yields

ρ(X1, X2) =
Q(t) − e−(h1+h2)t

e−(h1+h2)t/2
√

(1 − e−h1t)(1 − e−h2t)
. (3.9)

Since ρ(X1, X2) is always a complicated function of time, we focused more on the effect of
various guesses for Q(t) on the Qc

j(t).
One postulate for such a function is also

Q(t) = e−ht. (3.10)

With such a postulate, we have that

Qc
1(t) =

e−ht

e−h2t
= e−h1te−(h−h1−h2)t = e−(h−h1−h2)t Q1(t), (3.11a)

Qc
2(t) = e−(h−h1−h2)t Q2(t). (3.11b)

Since Qc
1 must be a legitimate distribution function, the argument of the exponential must

be negative so we have Qc
1(∞) = 0. Then using our expression in (3.11a), we have

h > h2.

But Qc
2 must be a legitimate distribution function as well, so the same corresponding

bound must be satisfied. Thus we have

h > max{h1, h2} ≥ h1 + h2

2
. (3.12)

Unfortunately, there are problems with this approach. First, we could find no way to justify,
either on stochastic or financial grounds, the form (3.10). In adddition, we found that the
correlation coefficient behaves in an unsatisfactory manner. For instance, substituting
(3.10) into (3.9), we obtain

ρ(X1, X2) =
e−ht − e−(h1+h2)t

e−(h1+h2)t/2
√

(1 − e−h1t)(1 − e−h2t)
=

e−(h−(h1+h2)/2)t − e−(h1+h2)t/2

√

(1 − e−h1t)(1 − e−h2t)

lim
t→∞

ρ(X1, X2) = 0,

in view of (3.12). However, this would seem to be incompatible with financial reality, since
if two companies are in the same sector and hence correlated, their correlation should not
decrease over time if they remain in the same core businesses.



Section 4: The Feynman-Kac Formula

In order to motivate our choice of joint survival distribution function, we let Hj(t)
be a random variable representing the default rate of company j at time t. How then do
we relate the random quantity Hj to the deterministic quantities of interest Qj and hj?
The answer lies in the Feynman-Kac Formula. We could simply quote the result, but the
introduction of correlation complicates matters somewhat, so we derive selected portions
here.

Let the random variable Hj follow the diffusion process

dHj = gj,1(H) dt + gj,2(H) dWj, (4.1a)

where dWj is a Wiener process and the gs are arbitrary functions of H, the vector of the
Hj . We correlate the Hj by letting

dWj dWk = ρjk dt, (4.1b)

where ρjk is the correlation between Hj and Hk. Of course, ρjj = 1 because every variable
is correlated with itself and ρjk = ρkj because the order of the W s doesn’t matter.

Now for any function G(H, t), we wish to calculate dG. We present some heuristic
arguments; more details may be found in [1]. We note from (4.1b) that dWj is roughly

O(
√

dt). Therefore, we have that

dG =
∂G

∂t
dt +

n
∑

k=1

∂G

∂Hk
dHk +

1

2

n
∑

k=1

n
∑

l=1

∂2G

∂HkHl
dHk dHl + o(dt)

dG =
∂G

∂t
dt +

n
∑

k=1

∂G

∂Hk
dHk +

1

2

n
∑

k=1

n
∑

l=1

∂2G

∂HkHl
(gk,2(H))(gl,2(H)) dWk dWl + o(dt)

=
∂G

∂t
dt +

(

n
∑

k=1

gk,1(H)
∂G

∂Hk
+

1

2

n
∑

k=1

n
∑

l=1

ρkl(gk,2(H))(gl,2(H))
∂2G

∂HkHl

)

dt

+
n
∑

k=1

gk,2(H)
∂G

∂Hk
dWk + o(dt). (4.2)

The term in the parentheses is called the generator of the diffusion.
By the Feynman-Kac Lemma [2], if G has the following form:

G(x, t) = E

{

exp

(

−
∫ t

0

g3(H(ξ)) dξ

)∣

∣

∣

∣

H(0) = x

}

, (4.3)
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then the value of G is related to the generator in the following way:

−∂G

∂t
+

n
∑

k=1

gk,1(x)
∂G

∂xk
+

1

2

n
∑

k=1

n
∑

l=1

ρkl(gk,2(x))(gl,2(x))
∂2G

∂xk∂xl
= g3(x)G, (4.4a)

where the extra minus sign in the t derivative comes from the minus sign in the exponential
in (4.4). (In particular, in financial papers it is customary to denote the beginning time
as t and the final time as T , which then removes the minus sign from both places.) Since
the function G is known at t = 0, the initial condition for the problem becomes

G(x, 0) = 1. (4.4b)

Given the definitions in (4.1a), Qj(t) can be interpreted as

Qj(t) = expected survival probability distribution function at time t

over all possible paths Hj(t) given H now

Qj(x, t) = E {Qj(Hj)|H(0) = x} ,

where Qj is a random variable corresponding to Qj , namely

Qj(Hj) = exp

(

−
∫ t

0

Hj(ξ) dξ

)

.

Note that Qj is a deterministic result, since it is an expectation value. But then using the
definition of the default rate, we have that

Qj(x, t) = E

{

exp

(

−
∫ t

0

Hj(ξ) dξ

)∣

∣

∣

∣

H(0) = x

}

,

and thus we may apply the Feynman-Kac Lemma with G = Qj , g3(x) = xj to obtain

−∂Qj

∂t
+

n
∑

k=1

gk,1(x)
∂Qj

∂xk
+

1

2

n
∑

k=1

n
∑

l=1

ρkl(gk,2(x))(gl,2(x))
∂2Qj

∂xk∂xl
= xjQj , (4.5a)

Qj(x, 0) = 1. (4.5b)

Similarly, Q(t) can be interpreted as

Q(t) = expected survival probability at time t over all possible paths H(t) given H now

Q(x, t) = E {Q(H)|H(0) = x} .

But how do we relate Q to the Qj? Recall that the companies are independent entities;
thus the event of failure is independent for each company. (It is just the random variables
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corresponding to the failure rates that are correlated.) Then we see that the probability
of the entire basket failing exactly at time t is given by

P (τj = t for every j) =

n
∏

j=1

P (τj = t) =

n
∏

j=1

d[1 − Qj(τj)]

dt
,

where the first equality holds because of the independence and the second because Qj is a
distribution function. Continuing to simplify, we have

P (τj = t for every j) =
n
∏

j=1

Hj exp

(

−
∫ t

0

Hj(ξ) dξ

)

,

Again using the fact that the event of failure is independent for each company, we may
integrate the above to obtain

P (t < τj ∀j) =

∫ ∞

t

n
∏

j=1

Hj exp

(

−
∫ t′

0

Hj(ξ) dξ

)

dt′

=
n
∏

j=1

∫ ∞

t

Hj exp

(

−
∫ t′

0

Hj(ξ) dξ

)

dt′ =
n
∏

j=1

exp

(

−
∫ t

0

Hj(ξ) dξ

)

= exp



−
∫ t

0

n
∑

j=1

Hj(ξ) dξ



 . (4.6)

But the probability listed in (4.6) is just Q(t). Thus the random variables Q and Qj

behave as if they are independent; they are coupled only through the diffusion process in
(4.1a), which expresses itself in the generator in the Feynman-Kac Lemma.

Thus we may apply the Feynman-Kac Lemma with G = Q, g3(x) =
∑

xj to obtain

−∂Q

∂t
+

n
∑

k=1

gk,1(x)
∂Q

∂xk
+

1

2

n
∑

k=1

n
∑

l=1

ρkl(gk,2(x))(gl,2(x))
∂2Q

∂xk∂xl
= Q

n
∑

j=1

xj , (4.7a)

Q(x, 0) = 1. (4.7b)



Section 5: Straight Wiener Process

We begin with the simplest case, letting Hj follow a random walk:

dHj = σj dWj , (5.1a)

so we have
gj,1(H) = 0, gj,2(H) = σj . (5.1b)

Substituting (5.1b) into (4.5a), we obtain

−∂Qj

∂t
+

1

2

n
∑

k=1

n
∑

l=1

ρklσkσl
∂2Qj

∂xk∂xl
= xjQj . (5.2)

Since the initial condition (4.5b) is independent of x and the right-hand side has only an
xj term in it, we try a solution of the following form:

Qj(x, t) = Qj(xj , t). (5.3)

Substituting (5.3) into (5.2) and (4.5b), we have

−∂Qj

∂t
+

σ2
j

2

∂2Qj

∂x2
j

= xjQj , (5.4a)

Qj(xj , 0) = 1. (5.4b)

One of the main goals is to construct the hj . Therefore, motivated by the exponential
form in (3.3), we let

Qj(xj, t) = exp (−bjj(t)xj − b0j(t)) , b0j(0) = bjj(0) = 0, (5.5)

with the b s ≥ 0 and where the initial conditions have been chosen to satisfy (5.4b). (The
reason for the double subscript will become clear in section 7.) We note from (3.3) that
with this ansatz, the default rate for company j becomes

hj = b′jjxj + b′0j . (5.6)

Substituting (5.5) into (5.4a) and using (5.6), we obtain

−
(

−xjb
′
jj − b′0j

)

Qj +
σ2

j

2
b2
jjQj = xjQj (5.7a)

hj = xj −
σ2

j

2
b2
jj . (5.7b)
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Note from (5.7b) that we never have to solve for b0j! We use (5.7b) later to simplify our
algebra; to obtain a solution, we match coefficients of xj in (5.7a) to obtain

b′jj = 1

bjj = t, (5.8)

hj(t) = xj −
σ2

j t2

2
(5.9)

Qj(xj , t) = exp

(

−xjt +
σ2

j t3

6

)

.

where we have used (5.7b) and (3.3). But this probability blows up as t → ∞! The key to
resolving the discrepancy lies in the default rate.

Equation (5.9) allows the default rate to go negative, which we know cannot be the
case. This happens because (5.1a) models a standard Wiener process. This means there is
no limit on the value of Hj as Brownian motion ensues. Since the variance increases with
t, it is more and more likely that hj will go negative for some values of t. Clearly a negative
default rate (corresponding to businesses which spontaneously emerge from default) is not
realistic. In such a case, we see by (3.3) that the survival probability distribution function
would increase, another unrealistic result (leading to a probability> 1 — nonsense).

However, we may interpret (5.9) as the Taylor expansion of a function hj(t) in the
limit of small time (or equivalently, low volatilities). It starts out with quadratic terms
because there is no drift. However, for the Taylor series approximation to make sense, we
should use this expression only for

σ2
j t2

2
≪ xj .

However, if we restrict time to satisfy the above, it is unclear whether the result would be
useful in the financial context.

Now that we have the Qj and hj , we want to calculate Q and h to see how the
correlation affects the default independence result. Substituting (5.1b) into (4.7a), we
obtain

−∂Q

∂t
+

1

2

n
∑

k=1

n
∑

l=1

ρklσkσl
∂2Q

∂xk∂xl
= Q

n
∑

j=1

xj , (5.10)

If we define the covariance matrix C by

ckl = ρklσkσl, (5.11)

then

∇ · (C∇Q) =

n
∑

k=1

∂

∂xk

n
∑

l=1

ckl
∂Q

∂xl
=

n
∑

k=1

n
∑

l=1

ρklσkσl
∂2Q

∂xk∂xl
. (5.12)

Thus (5.10) may be rewritten as

−∂Q

∂t
+

1

2
∇ · (C∇Q) = Q

n
∑

j=1

xj . (5.13)
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Since we expect Q to be very close to the value given if the probabilities were independent
(this is a weak correlation assumption), we let

Q = exp (−bρ(t))

n
∏

j=1

Qj , bρ(0) = 0, (5.14)

where the initial condition has been chosen to satisfy (4.7b). Here we use the subscript
ρ since this is the term that is going to include the effects of the correlations. Clearly if
bρ = 0, then the defaults are independent. We also note from this definition that

Q(x, t) = exp

(

−
∫ t

0

h(ξ) dξ

)

= exp



−
∫ t

0



b′ρ(ξ) +

n
∑

j=1

hj(ξ)



 dξ



 (5.15a)

h(t) = b′ρ(t) +

n
∑

j=1

hj(t). (5.15b)

If bρ = 0, then b′ρ = 0 and hence the default rates are independent as well.
As preparatory steps, we note from (5.15a) that

∂Q

∂t
= −



b′ρ +
n
∑

j=1

hj



Q, (5.16a)

= −



b′ρ +

n
∑

j=1

(

xj −
σ2

j

2
b2
jj

)



Q, (5.16b)

∂Q

∂xk
=

(

∂Qk

∂xk

)

Q

Qk
= −bkkQ, (5.17a)

∂2Q

∂xk∂xl
= −bkk

∂Q

∂xl
= bkkbllQ, (5.17b)

where in deriving (5.16b) we have used (5.7b), and in deriving (5.17) we have used (5.5).
Substituting (5.15a) into (5.10) and using (5.16b) and (5.17), we have



b′ρ +

n
∑

j=1

(

xj −
σ2

j

2
b2
jj

)



Q +
1

2

n
∑

k=1

n
∑

l=1

ρklbkkbllσkσlQ = Q

n
∑

j=1

xj

b′ρ +
1

2

n
∑

k=1

∑

l6=k

ρklσkσlbkkbll = 0

b′ρ = −1

2

n
∑

k=1

∑

l6=k

ρklσkσlbkkbll, (5.18)
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where in performing the cancellation we have used the fact that j, k, and l are dummy
variables. Now if we let

bk = bkkek, (5.19)

then
bT

k Cbl = bkkblle
T
k Cel = bkkbllckl = bkkbllρklσkσl. (5.20)

Upon substitution of the above into (5.18), we have

b′ρ = −1

2

n
∑

k=1

∑

l6=k

bT
k Cbl. (5.21)

However, if we use (5.7b) and (5.18) in (5.15b), we have

h(t) =
n
∑

j=1

(

xj −
σ2

j b2
jj

2

)

− 1

2

n
∑

k=1

∑

l6=k

ρklσkσlbkkbll. (5.22)

We note from (5.22) that if the variables are independent, ρkl = 0 and we have the
independent default approximation (3.4). Continuing to simplify, we have

h(t) =

n
∑

j=1

xj −
1

2

n
∑

k=1

n
∑

l=1

ρklσkσlbkkbll, (5.23a)

=
n
∑

j=1

xj −
1

2

n
∑

k=1

n
∑

l=1

bT
k Cbl, (5.23b)

where we have used (5.20). We note that (5.23b) is a generalization of (5.7b), since if
n = 1, the sums collapse and C = σ2

j . Financially, we see that the default rate h must
always contain the effect of the variance of any underlying related random variables. If
there is only one variable Hj , then the only effect is through σ2

j . However, if there is more
than one variable, then the effect manifests itself in the covariance matrix C.

Substituting (5.8) into (5.18) and (5.23a), we obtain

b′ρ = − t2

2

n
∑

k=1

∑

l6=k

ρklσkσl (5.24a)

h(t) = −st2

2
+

n
∑

j=1

xj , s =
n
∑

k=1

n
∑

l=1

ckl (5.24b)

Substituting (5.24b) into (5.15a), we have

Q(t) = exp





st3

6
− t

n
∑

j=1

xj



 . (5.25)

Note that h(t) < 0, unless

t ≤

√

√

√

√

2

s

n
∑

j=1

xj .



Section 6: Adding Drift

The next complication we add is that of drift, or, in this case, reversion to the mean.
We change (5.1a) to the following:

dHj = (rj − ajjHj) dt + σj dWj , (6.1a)

where rj and ajj are positive constants. Essentially, (6.1a) says that Hj may oscillate
following Brownian motion, but is still drawn to a steady state (mean) rj/ajj . This choice
of diffusion leads to the following forms:

gj,1(H) = rj − ajjHj , gj,2(H) = σj . (6.1b)

Substituting (6.1b) into (4.5a), we obtain

−∂Qj

∂t
+

n
∑

k=1

(rk − akkxk)
∂Qj

∂xk
+

1

2

n
∑

k=1

n
∑

l=1

ρklσkσl
∂2Qj

∂xk∂xl
= xjQj

subject to (4.5b). However, since the only component of x that appears explicitly is xj ,
we may again use the guess in (5.3) to reduce the above to

−∂Qj

∂t
+ (rj − ajjxj)

∂Qj

∂xj
+

σ2
j

2

∂2Qj

∂x2
j

= xjQj (6.2)

subject to (5.4b).
We again use the form in (5.5). Substituting (5.5) into (6.2) and using (5.6), we obtain

−
(

−xjb
′
jj − b′0j

)

Qj + (rj − ajjxj)(−bjj)Qj +
σ2

j

2
b2
jjQj = xjQj , (6.3a)

hj = xj −
σ2

j

2
b2
jj + bjj(rj − ajjxj).

(6.3b)

Note from (6.3b) that (as in section 5) we never have to solve for b0j ! We use (6.3b) later
to simplify our algebra; to obtain a solution, we match coefficients of xj in (6.3a) to obtain

b′jj + ajjbjj = 1

bjj =
1 − e−ajjt

ajj
. (6.4)
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Note that in the limit as ajj → 0, bjj → t, as in (5.8). Also, upon examination of (6.3b),
we see that as t → ∞, bjj approaches a constant and hence so does hj :

hj → 1

ajj

(

rj −
σ2

j

2ajj

)

.

Thus hj can go negative in this case as well if σ2
j > 2rjajj . Since it is possible for hj to

have an internal minimum, setting the variance below this threshold is necessary to keep
hj positive, but is not sufficient.

Substituting (6.1b) into (4.7a), we obtain

−∂Q

∂t
+

n
∑

k=1

(rk − akkxk)
∂Q

∂xk
+

1

2

n
∑

k=1

n
∑

l=1

ρklσkσl
∂2Q

∂xk∂xl
= Q

n
∑

j=1

xj (6.5)

subject to (4.7b). If we define the diagonal matrix A by

akl = akkδkl, (6.6)

where δkl is the Kronecker delta, then

(r− AT x) · ∇Q =
n
∑

j=1

(rj − ajjxj)
∂Q

∂xj
. (6.7)

(The reason for the transpose will become clear in section 7.) Thus (6.5) may be rewritten
using (5.12) as

−∂Q

∂t
+ (r− AT x) · ∇Q +

1

2
∇ · (C∇Q) = Q

n
∑

j=1

xj . (6.8)

We again use (5.15). Substituting (5.15a) into (6.5) and using (5.16a), (5.17), and (6.3b),
we have






b′ρ +
n
∑

j=1

[

xj −
σ2

j

2
b2
jj + bjj(rj − ajjxj)

]







Q +
n
∑

j=1

(rj − ajjxj)(−bjjQ)

+
1

2

n
∑

j=1

n
∑

l=1

ρjlσjσlbjjbllQ = Q
n
∑

j=1

xj ,

which after cancellation results in (5.21). Substituting (5.21) and (6.3b) into (5.15b), we
obtain

h(t) =

n
∑

j=1

[xj + bjj(rj − ajjxj)] −
1

2

n
∑

k=1

n
∑

l=1

bT
k Cbl

= −1

2

n
∑

j=1

n
∑

k=1

bT
j Cbk +

n
∑

j=1

[

xj + (r− ATx) · bj

]

. (6.9)



Section 7: Adding Coupling

The next complication we add is that of coupling of the drift terms. To do so, we
change (6.1a) to the following:

dHj =

(

rj −
n
∑

l=1

aljHl

)

dt + σj dWj . (7.1a)

Essentially, the random process is governed as in section 6, but the mean (steady state)
is now determined by the solution of a linear system that includes the effects of all other
variables. This choice of diffusion leads to the following forms:

gj,1(H) = rj −
n
∑

l=1

aljHl, gj,2(H) = σj . (7.1b)

Substituting (7.1b) into (4.5a), we obtain

−∂Qj

∂t
+

n
∑

k=1

(

rk −
n
∑

l=1

alkxl

)

∂Qj

∂xk
+

1

2

n
∑

k=1

n
∑

l=1

ρklσkσl
∂2Qj

∂xk∂xl
= xjQj (7.2)

subject to (4.5b). Note that in this case we must include the correlation in the equations
for each of the Qj as all the components of x appear explicitly in the equation. Again
using (5.12) we rewrite (7.2) as

−∂Qj

∂t
+ (r− ATx) · ∇Qj +

1

2
∇ · (C∇Qj) = (ej · x)Qj , (7.3)

where we have removed the diagonal restriction on A given in (6.6). From (7.2) we see
that Qj is now a function of x and t, so we replace (5.5) with

Qj(x, t) = exp

(

−
n
∑

k=1

bkj(t)xk − b0j(t)

)

, b0j(0) = bkj(0) = 0, (7.4)

where the initial conditions have been chosen to satisfy (4.5b). If we let the kth entry
(row) in the column vector bj be bkj , then we may rewrite (7.4) as

Qj(x, t) = exp (−bj · x − b0j) , b0j(0) = 0, bj(0) = 0. (7.5)

Note that (7.5) is a natural generalization of (5.5) given the definition in (5.19) used in
the decoupled case.
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We note from (3.3) that with this ansatz, the default rate for company j becomes

hj = b′
j · x + b′0j. (7.6)

As preparatory steps, we note that

∂Qj

∂xk
= −bkjQj

∇Qj = −Qjbj, (7.7a)

∇ · (C∇Qj) = −∇ · (QjCbj) = −(∇Qj) · (Cbj) = −(−bjQj) · (Cbj)

= bT
j CbjQj, (7.7b)

where in the next-to-last line we have used the fact that Qj is the only term in the right-
hand side of (7.7) that depends on x.

Substituting (7.5) into (7.3) and using (7.7), we obtain

−
(

−b′
j · x− b′0j

)

Qj + (r− ATx) · (−bj)Qj +
1

2
bT

j CbjQj = Qj(ej · x) (7.8a)

(b′
j + Abj − ej) · x + b′0j − r · bj +

1

2
bT

j Cbj = 0, (7.8b)

hj = xj −
1

2
bT

j Cbj + (r− AT x) · bj , (7.9)

where we have used (7.6). Note that (7.9) is a generalization of (6.3b) given the definition
in (5.19) used in the decoupled case.

Note from (7.9) that (as in sections 5 and 6) we never have to solve for b0j! We use
(7.9) later to simplify our algebra; to obtain a solution, we match coefficients of x in (7.8b)
to obtain

b′
j + Abj = ej . (7.10a)

If we construct a matrix B whose jth column is bj , then we may solve for all the bj

together:

B′ + AB = I, B(0) = O, (7.10b)

B = Bh + A−1 =⇒ B′
h + ABh = O, Bh(0) = −A−1,

Bh(t) = −A−1e−tA,

B(t) = A−1(I − e−tA). (7.11)

We need B(∞) = O, so all the eigenvalues of A must be positive: hence A must be positive
definite. Note that (7.11) is a generalization of (6.4) to multiple dimensions.

Again, we see from (7.9) that hj can become negative, though the calculation is more
involved than that in section 6, unless additional restrictions are imposed.

Substituting (7.1b) into (4.7a), we obtain

−∂Q

∂t
+

n
∑

k=1

(

rk −
n
∑

l=1

alkxl

)

∂Q

∂xk
+

1

2

n
∑

k=1

n
∑

l=1

ρklσkσl
∂2Q

∂xk∂xl
= Q

n
∑

j=1

xj , (7.12)
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and hence (6.8) also holds with our new definition of A.
We again use (5.14), but recall that Qj now depends on x. As preparatory steps, we

note that

∇Q =

n
∑

k=1

∇Qk
Q

Qk
= −Q

n
∑

k=1

bk (7.13a)

∇ · (C∇Q) = −∇ ·
(

QC

n
∑

k=1

bk

)

= −(∇Q) ·
(

C

n
∑

k=1

bk

)

= −



−Q

n
∑

j=1

bj



 ·
(

C

n
∑

k=1

bk

)

= Q
n
∑

j=1

n
∑

k=1

bT
j Cbk, (7.13b)

Substituting (5.14) into (6.8) and using (5.16a), (7.9), and (7.13), we have







b′ρ +
n
∑

j=1

[

xj −
1

2
bT

j Cbj + (r− AT x) · bj

]







Q + (r− ATx) · Q
n
∑

j=1

(−bj)

+
1

2
Q

n
∑

j=1

n
∑

k=1

bT
j Cbk = Q

n
∑

j=1

xj .

We immediately obtain the same cancellation as previously, so (5.21) holds with our new
definition of bj , and (6.9) holds with our new definition of A.



Section 8: Changing the Variance

In each of the previous sections, it was possible for hj(t) to become negative under
certain conditions. This was because Hj followed a strict Wiener process and so could
move in either direction without a preference. In truth, we wish to bound hj away from
zero, so we expect that if Hj approaches zero, the size of the jumps will decrease. Thus,
we wish to replace (7.1) with the following form:

dHj =

(

rj −
n
∑

l=1

aljHl

)

dt + σjF (H) dWj, F (Hmin) = 0. (8.1)

Then with such a postulate, Hj could never decrease beyond some minimum threshold
value Hmin. Essentially, the random process is as in section 7, but the size of the jumps
now varies with H.

We begin by letting F (H) =
√

Hj in (8.1) to obtain

dHj =

(

rj −
n
∑

l=1

aljHl

)

dt + σj

√

Hj dWj . (8.2a)

Note that in this case Hj,min = 0. For reasons that will become clear momentarily, we set
ρkl = δkl. Thus the default rates are not correlated, but they are coupled. This choice of
diffusion leads to the following forms:

gj,1(H) = rj −
n
∑

l=1

aljHl, gj,2(H) = σj

√

Hj . (8.2b)

Substituting (8.2b) into (4.5a) with ρkl = δkl, we obtain

−∂Qj

∂t
+

n
∑

k=1

(

rk −
n
∑

l=1

alkxl

)

∂Qj

∂xk
+

1

2

n
∑

k=1

σ2
kxk

∂2Qj

∂x2
k

= xjQj (8.3)

subject to (4.5b). We like this form because the xs still appear only linearly. If we had
introduced a nonzero correlation, we would have had terms that depended on

√
xjxk. This

would have prevented the ansatz in (7.5) from working, and we would have had to solve
the entire PDE.

Since we have eliminated the ρ terms, we again use (7.5). As a preparatory step, we
note that with (7.5)

∂2Qj

∂x2
k

= −bkj
∂Qj

∂xk
= b2

kjQj. (8.4)
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Substituting (7.5) into (8.3) and using (7.7a) and (8.4), we obtain

−
(

−b′
j · x − b′0j

)

Qj + (r− AT x) · (−bj)Qj +
1

2

n
∑

k=1

σ2
kxkb2

kjQj = Qj(ej · x). (8.5)

If we define the matrix Y such that

ykj =
σ2

kb2
kj

2
, (8.6)

then we may rewrite the above as

b′
j · x + b′0j − (r− ATx) · bj + yj · x = (ej · x) (8.7a)

(b′
j + Abj + yj − ej) · x + b′0j − r · bj = 0, (8.7b)

hj = xj − yj · x + (r− ATx) · bj , (8.8)

where yj is the jth column of Y .
Note from (8.8) that (as in sections 5–7) we never have to solve for b0j ! However, in

order for us to compute solutions, we will do so. To begin the solution process, we match
coefficients of x and 1 in (8.7b) to obtain

b′
j + Abj + yj = ej , (8.9a)

B′ + AB + Y = I, B(0) = O, (8.9b)

b′0j − r · bj = 0. (8.10)

Equations (8.9) are analogous to (7.10) with one key difference: they are nonlinear because
of the forcing Y . We tried various perturbation schemes to see if we could obtain analytical
solutions, but each time the first-order correction terms involved very messy and perhaps
insoluble equations. Thus we focused on obtaining numerical solutions as described at the
end of this section.

Substituting (8.2b) into (4.7a), we obtain

−∂Q

∂t
+

n
∑

k=1

(

rk −
n
∑

l=1

alkxl

)

∂Q

∂xk
+

1

2

n
∑

k=1

σ2
kxk

∂2Q

∂x2
k

= Q

n
∑

j=1

xj . (8.11)

Unfortunately, due to the nonlinearity in the ODE system (8.9b), substituting in (5.14)
will not result in the sort of cancellation that yielded a simple equation for b′ρ. However,
motivated by (7.5), we let

Q(x, t) = exp (−b0 · x − b00) , b00(0) = 0, b0(0) = 0, (8.12a)

from which the default rate h becomes

h = b′
0 · x + b′00. (8.12b)
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Then since the operators on the left-hand sides of (8.3) and (8.11) are identical, upon
substitution of (8.12a) into (8.11), we obtain

−(−b′
0 · x − b′00)Q + (r− AT x) · (−b0)Q + (y0 · x)Q = Q

n
∑

j=1

xj , (8.13)

where y0 is defined in an analogous way to yj . Solving for h0, we have

h0 = (1− y0) · x + (r− ATx) · b0, (8.14)

where 1 is the n-dimensional vector whose entries are all equal to 1. Note from (8.14) that
we never need to solve for b00! However, in order for us to compute solutions, we will do
so. Continuing to simplify (8.13), we have

b′
0 · x + b′00 − (r− AT x) · b0 + (y0 − 1 · x) = 0

(b′
0 + Ab0 + y0 − 1) · x + b′00 − r · b0 = 0 (8.15)

b′
0 + Ab0 + y0 = 1, (8.16a)

b′00 − r · b0 = 0, (8.16b)

where we have matched coefficients of x and 1. Note that equations (8.16) are in the same
form as (8.9a) and (8.10).

In order to obtain some numerical results, we specialize to the case where n = 2. For
completeness, we write down the equations explicitly. Equations (8.9b) and (8.10) become

b′11 + a11b11 + a12b21 +
σ2

1b
2
11

2
= 1, (8.17a)

b′21 + a21b11 + a22b21 +
σ2

2b
2
21

2
= 0, (8.17b)

b′01 − r1b11 − r2b21 = 0, (8.17c)

b′12 + a11b12 + a12b22 +
σ2

1b
2
12

2
= 0, (8.18a)

b′22 + a21b12 + a22b22 +
σ2

2b
2
22

2
= 1, (8.18b)

b′02 − r1b12 − r2b22 = 0, (8.18c)

while equations (8.16) become

b′10 + a11b10 + a12b20 +
σ2

1b
2
10

2
= 1, (8.19a)

b′20 + a21b10 + a22b20 +
σ2

2b
2
20

2
= 1, (8.19b)

b′00 − r1b10 − r2b20 = 0. (8.19c)
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As mentioned above, equations (8.17c), (8.18c), and (8.19c) are not necessary, but make
the Maple calculations more straightforward.

For the calculations, we took the following parameter values as constants:

a11 = 1, a22 = 1, r1 = 0.05, r2 = 0.06, σ1 = 1/4, σ2 = 1/3, x2 = 0.03,
(8.20a)

a12 = a21 = −0.4, (8.20b)

and then varied the value of x1. We begin with the case where x1 = 0.4, which means that
initially the default rate is 40%. This might correspond to a tech startup, but even this
value seems extraordinarily large for a real company.

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10

Figure 8.1. Comparison of h (thick line) and h1 + h2 (thin line) vs.
t for parameters in (8.20) and x1 = 0.4.

In figure 8.1 we show a comparison of h and h1 + h2 for this case. Note that the
default rate decays from the high value to a more moderate one. Here the steady state
is rather large (around 16%). The steady state can easily be adjusted by changing the
parameters; however, we did not have enough time at the workshop to do so. As expected,
we overestimate h by adding h1 and h2. Figure 8.2 shows the size of the overestimate.
Note that as t → ∞, it asymptotes to a finite nonzero value.
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Figure 8.2. h1 + h2 − h vs. t for parameters in (8.20) and x1 = 0.4.

Next we consider the case where x1 = 0.14, which is very close to the steady state.
Therefore in figure 8.3 you see a bump in the rate as it shoots up briefly and then decays
down to the steady state. This could be a model for a temporary crisis that may affect a
company’s ability to pay bonds. The error looks very large, but this is an artifact of the
small scale on the y-axis. We graph the actual error in figure 8.4. Note that the graph is
very close in size and shape to the previous case.
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Figure 8.3. Comparison of h (thick line) and h1 + h2 (thin line) vs.
t for parameters in (8.20) and x1 = 0.14.
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Figure 8.4. h1 + h2 − h vs. t for parameters in (8.20) and x1 = 0.14.
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Figure 8.5. Comparison of h (thick line) and h1 + h2 (thin line) vs.
t for parameters in (8.20) and x1 = 0.01.

Lastly we consider the case where x1 = 0.01, which corresponds to a very steady
company. However, it is coupled to a riskier company. Therefore in figure 8.5 you see
growth in the rate to the steady state. Again the error is roughly the same as in the
previous cases, as shown in figure 8.6.
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Figure 8.6. h1 + h2 − h vs. t for parameters in (8.20) and x1 = 0.01.

0

0.02

0.04

0.06

0.08

0.1

0.12

2 4 6 8 10

Figure 8.7. h1 + h2 − h vs. t for parameters in (8.20a) and x1 = 0.4. In
decreasing order of thickness: a12 = −0.9, −0.7, −0.5, −0.3, and −0.1.

Lastly, we note from (8.1) that since ρ12 = 0, the coupling between the two companies
is given by the size of a12 (since A is symmetric). If a12 = 0, the companies are totally
independent because we have taken ρ12 = 0. Therefore, in figure 8.7 we show a plot of the
first case keeping the parameters in (8.20a) with x = 0.4. However, we let a12 vary. We
note that as a12 gets smaller, the difference gets smaller as the coupling weakens.



Section 9: Extensions

We present briefly some other models considered at the workshop. Each has the prop-
erty that the equations they generate can be transformed into ODEs via the substitutions
(7.5) and (8.12a). First we adjust (8.2a) to include a minimum tolerance for each of the
variables:

dHj =

(

rj −
n
∑

l=1

aljHl

)

dt + σj

√

Hj − Hj,min dWj. (9.1)

If we still keep ρkl = δkl, then the only change to our work in section 8 is that xj gets
changed to xj − xj,min in the diffusion term only. Thus (8.5) becomes

−
(

−b′
j · x− b′0j

)

Qj +(r−AT x)·(−bj)Qj +
1

2

n
∑

k=1

σ2
k(xk−xk,min)b2

kjQj = Qj(ej ·x), (9.2)

so (8.7) and (8.8) become

b′
j · x + b′0j − (r− ATx) · bj + yj · (x − xmin) = (ej · x)

(b′
j + Abj + yj − ej) · x + b′0j − r · bj − yj · xmin = 0, (9.3a)

hj = xj − yj · (x − xmin) + (r− ATx) · bj. (9.3b)

The coefficient of x is the same in (9.3a) and (8.7b), so equations (8.9) hold and (8.10) is
replaced by

b′0j − r · bj − yj · xmin = 0. (9.4)

Following the same arguments for Q, we see that (8.13) becomes

b′
0 · x + b′00 − (r− AT x) · b0 + y0 · (x − xmin) = 1 · x

(b′
0 + Ab0 + y0 − 1) · x + b′00 − r · b0 − y0 · xmin = 0, (9.5a)

so (8.14) becomes
h0 = 1 · x− y0 · (x− xmin) + (r− ATx) · b0. (9.5b)

The coefficient of x is the same in (9.5a) and (8.15), so equation (8.16a) holds and (8.16b)
is replaced by

b′00 − r · b0 − y0 · xmin = 0. (9.6)

Another model proposed was to let

dHj =

(

rj −
n
∑

l=1

aljHl

)

dt + σj

√

Hm − Hm,min dWj , (9.7)
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for some particular value of m. In other words, the size of the random walk term is
controlled by just one of the failure rates Hm. This may be a good assumption for a set
of subsidiaries of company m, so the fortunes of company m directly affect all the others,
but the others don’t affect one another very much. However, the model is defective in that
for j 6= m, there is no mechanism to keep Hj from going negative.

In this case, we can include the correlation, so the analysis to follow is in section 7.
Essentially the

√

Hm − Hm,min term acts like a constant in the covariance summation, so
(7.3) becomes

−∂Qj

∂t
+ (r− ATx) · ∇Qj +

xm − xm,min

2
∇ · (C∇Qj) = (ej · x)Qj ,

so (7.8) and (7.9) become

b′
j · x + b′0j − (r− ATx) · bj +

1

2
(em · x− xm,min)b

T
j Cbj = ej · x

(

b′
j + Abj − ej +

1

2
bT

j Cbjem

)

· x + b′0j − r · bj −
xm,min

2
bT

j Cbj = 0, (9.8a)

hj = xj −
1

2
(em · x − xm,min)bT

j Cbj + (r− AT x) · bj . (9.8b)

Though from (9.8b) we see that we don’t need to compute b0j to obtain hj , our experience
with nonlinear systems tells us that hj will be easier to compute if we do by matching the
coefficients of x and 1 in (9.8a):

b′
j + Abj +

1

2

(

bT
j Cbj

)

em = ej, (9.9a)

b′0j − r · bj −
xm,min

2
bT

j Cbj = 0. (9.9b)

Since we now have introduced nonlinearity into our problem, we will use the ansatz in
(8.12a) for Q. Also, since the operators on the left-hand sides of (7.2) and (7.12) are
identical, as in the first model in this section we simply replace ej by 1 in (9.8) and (9.9)
to obtain

h0 = 1 · x − 1

2
(em · x − xm,min)bT

0 Cb0 + (r− AT x) · b0. (9.10)

b′
0 + Ab0 +

1

2

(

bT
0 Cb0

)

em = 1, (9.11a)

b′00 − r · b0 −
xm,min

2
bT

0 Cb0 = 0. (9.11b)

The final model proposed was for a two-company system: there we let

dHj =

(

rj −
2
∑

l=1

aljHl

)

dt + σj

√

Hm − Hm,min dWj , j 6= m. (9.12)
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In other words, the size of the random walk term is controlled by the behavior of the
other company’s failure rate. This has a nice symmetry property, and may be a good
assumption for a pair of companies who depend nearly exclusively on one another for
business. However, the model is defective in that there is no mechanism to keep Hj from
going below Hj,min, which from the square root would then push the variables into the
complex plane.

In this case, we cannot include the correlation due to the previously mentioned cross-
term problem, so the analysis to follow is that of the first model given above. Here (9.2)
is replaced by

−
(

−b′
j · x − b′0j

)

Qj + (r−ATx) · (−bj)Qj +
1

2

2
∑

k=1

σ2
k(xm − xm,min)b2

kjQj = Qj(ej · x),

k 6= m. (9.13)

Therefore, if we replace the definition of the matrix Y in (8.6) with

ymj =
σ2

kb2
kj

2
, m 6= k, (9.14)

then we can use the yj notation and (9.3)–(9.6) hold.



Section 10: Conclusions and
Further Research

In sections 1 and 2 we introduced the concept of multi-name credit derivatives. In
section 3 we tried a very simple model for a joint default rate, but found that the model
led to uncorrelated companies as t → ∞: a result not seen in the real world. In section
4 we introduced the Feynman-Kac formula to relate the model for a random process to
an underlying PDE that can be solved to obtain the survivor probabilities. Sections 5–
9 consisted of slowly increasing the complexity of the underlying random process from
a simple Wiener process to include drift, coupling, nonconstant variance, and minimum
tolerances.

Numerical results for the case of two companies suggest that the models derived in
Sections 8 and 9 may be useful in pricing of multi-name credit derivatives. It would be
desirable to test the validity of these models against historical data to determine whether
they could actually be used. A more general theory for the evolution of correlated failure
rates of a basket of names is still lacking, but some ideas about what is needed may be
inferred from the work in this report.



Nomenclature

In the manuscript, boldface indicates a vector where the componenets are the italic
letters with subscript j. The equation number where a particular quantity first appears is
listed, if appropriate.

A: matrix of constants ajk modeling relationship between H’s in the drift term (6.1a).
B(t): matrix of functions bjk(t) in the solution ansatz .

C: covariance matrix (5.11).
D(t): discount factor for time t (2.4).
dW : Wiener process (5.1a).
ej: jth standard unit normal vector (5.19).

F (H): function to keep H from jumping over to negative values (8.1).
f(t): instantaneous forward rate at time t (3.1).

G(H): arbitrary function (4.2).
g(H): arbitrary function, variously defined (4.1a).
Hj(t): random variable representing the default rate for company j (4.1a).

h(t): default rate at time t (3.2).
i: indexing variable referring to time period.
j: indexing variable referring to company (2.5).
k: indexing variable referring to company (4.1b).
l: indexing variable referring to company (4.2).

M : number of insured time periods.
m: variable referring to company (9.7).
n: number of companies (2.8).
P : probability (2.1).
Q: random variable corresponding to Q.

Q(t): survival probability distribution function (2.1).
r: positive constant in drift process for H (6.1a).
s: positive constant representing correlation (5.24a).
t: time from contract sale.

V : value of contract (2.3).
w: percent of principal recoverable in bankruptcy proceedings.

Xj: indicator variable for default of company j (3.6).
x: vector of initial default rates (4.3).
Y : matrix of nonlinear terms (8.6).
ξ: dummy variable.
ρ: correlation coefficient (3.8).

σj : standard deviation related to company j (3.8).
τ : time of default (2.1).

φi: insurance premium at time ti.
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Other Notation

c: as a superscript on Q, used to indicate a conditional probability.
f: as a superscript on Q, used to indicate a probability where one of the issuers

defaults first (2.6).
h: as a subscript, used to indicate a homogeneous solution.

min: as a subscript, used to indicate a minimum threshold value (8.1).
ρ: as a subscript, used to indicate the part of the solution that depends on ρ (5.14).
0: as a subscript, used to indicate a single-company contract (2.1) or joint distribu-

tion (8.12a).
+: as a subscript, used to indicate a positive quantity.
′: used to indicate a dummy variable.
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