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Dynamic Location of Phone Call Clusters

Problem presented by
José Gil

Motorola

Executive Summary

When mobile handsets are making a call, a measurement report is sent to
the serving base station periodically which includes the signal strengths
to the base station and the next six strongest signals of the surrounding
base stations. Motorola asked the Study Group if it was possible to
say whether we could use this information to infer if phone calls occur
in clusters and if it was possible to determine the locations, size and
other features of these clusters. The Study Group found clusters in
‘signal space,” that is, handsets reporting similar signal strengths with
the same base stations and explored methods of locating these clusters
geographically.
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1 Introduction

A common problem in cellular systems is identifying the locations of users on the
system. Although mobile handsets incorporating GPS systems do exist, their use is
far from widespread and likely to remain so until battery-life problems are solved.
In addition, GPS does not function well inside buildings or in heavily built-up areas,
and may only provide a crude estimate of location.

Position estimation is often performed to provide individual users with location-
specific information - for example proximity to shops or stations - or to provide
contextual advertising or mapping assistance. The Study Group was asked to anal-
yse the traffic distributions and densities rather than the locations of individual
subscribers: is the traffic evenly spread over the serving area, or are there localised
clusters of heavy traffic for example, at station or theatre exits? Are these clusters
static, or do they change over time? What is the size of these clusters, and how
accurate are the estimates of the cluster location and size? Furthermore, can the
distribution of the subscribers be classified as in-building or outdoor by observing
the data? Additional classification of the traffic would be to cluster the users in
terms of their mobility (static/pedestrian/vehicular) and distribution in the verti-
cal.

The information gathered from the clustering analysis would be invaluable for
network operators wishing to determine where they should be integrating additional
network capacity, for example through the introduction of picocells, femtocells, and
WLAN access points. Combining the cluster information with call models and
sample tariffs can provide detailed business plans to support analysis of likely return
on investment.

Mobile handsets (MS) are usually in contact with one or more base stations (BS)
during and between calls. The mobile measures the received signal strength from
nearby base stations and attempts to access the BS with the strongest signal when
a call is to be established. As the user moves around the system, the varying signal
strengths received from neighbouring BSs are recorded by the mobile and reported
to the serving BS. If the user moves out of the coverage area of the serving BS, a
handover can be performed which allocates the MS to a new serving BS.

The MS sends the RSSI (Received Signal Strength Indication) information back
to the serving BS in the form of periodic measurement reports (MR). The primary
function of the MRs is for handover and mobility control; however it is possible to
sample and store the MRs by analysing the communication links from the BS to its
controller (RNC), or by call-trace techniques at the BS itself. In this way a large
number of MRs can be captured from the entire population of MS in an area being
served by a group of cells. Many techniques have been proposed and implemented
which attempt to derive the MS location from the MRs, commonly based around
a triangulation approach or TDOA (time difference of arrival). Although these
techniques can be effective in some situations, there are a number of problems to
be solved. Firstly, there may only be RSSI information from the serving cell (and
no other neighbours) for many MS. Secondly, the BS in a GSM system are unsyn-
chronised and their timing references may drift relative to each other, introducing
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Figure 1: A measurement report being sent to the serving base
station

errors in the timing measurements reported by the MS. Thirdly, the signal received
by the MS is attenuated by other factors such as Rayleigh and Rician fading caused
by obstructions, multipath scattering, and also Doppler effects caused by mobility.
The combined effects of all these factors need to be considered when producing a
location estimate for a specific MS.

1.1 Data

(1.1.1)

(1.1.2)

The GSM data we were given was a subset of MRs reported to a base
station in a ten hour period. Every 480 ms, each handset making a call
sends an MR to the serving BS containing the signal strength (power) of
the serving BS and 6 strongest signals from the neighbouring BSs, the
signal quality (related to the bit error rate) and the timing advance (TA)
to the serving base station. The timing advance is an integer and is a
synchronisation variable which enables the handset to send the data to
the correct time slot allocated for the handset at the serving base station.
If TA = n, the handset is approximately between 550n and 550(n +
1) metres from the serving BS along the strongest signal path. (Each
TA unit represents 3.69 ps shift in the time slot which corresponds to
approximately 1100 m difference to the round-trip distance.) We would
like to use this information together with the signal strengths to produce
a better estimate of the location of the handsets.

There are two types of base stations, some are omni-directional i.e. the
power output is evenly spread over 360 degrees from the BS whilst others
are directional. The directional antennae concentrate their signal in a 120
degree arc. So at any one BS location, we could have one omni-directional
BS or three directional BSs. Together with the MR data, we had the
location (latitude and longitude coordinates) and power output of each
BS and the azimuth for the directional antennae BSs.
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1.2 Signal space and physical space

(1.2.1)  Although each MR only reported up to six of the strongest signals from
the neighbouring BSs, there were 52 different neighbouring BSs recorded
in the whole data. We can think of a measurement report as a projection
from the ‘signal space’ in R to a seven-dimensional subspace. Each point
in this signal space may map to several different points in the ‘physical
space’ where the handsets are located.

1.3 Proposed solution

(1.3.1)  Using a high dimensional cluster analysis technique we can try and identify
clusters in the signal space. Using extra information in the MRs, we
can start to analyse the cluster and possibly split the cluster up further
depending on what we find. For example, if the cluster moves rapidly in
signal space with time, we could assume that the handsets are moving.
However, this may not be true in all cases — for example, if a rumour
spread through a crowd, a cluster in signal space would be moving even
though the people themselves remain still. If we find that some handsets
of the cluster have a weak signal quality (related to the bit error rate)
compared to the others, we could conclude that there is a cluster indoors
and one outdoors.

(1.3.2)  Further work is required to verify whether clusters in signal space corre-
spond to clusters in physical space. However, with some careful analysis
of the clusters and their MRs we could map these signals into physical
space using for example, the triangulation method proposed in this report
in section 2.3

2 Details

2.1 Propagation models for the base station signals

(2.1.1) In free space we can relate the signal power to the distance from the BS
by

2
}%::GTGR<4;f> Pr. (1)

where G is the gain in the transmitter, G'i is the gain of the receiver, f is
the frequency of the signal, ¢ is the speed of light, r is the distance between
the transmitter and the receiver and Pr is the power of the transmitter.

(2.1.2) In the presence of a flat plate providing a ground reflection, destructive

interference implies
hrhg\*
Pr = Pr. (2)

r2
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(2.1.3)

where hr is the height of the transmitter and hg is the height of the
receiver, both assumed small compared to r. In reality buildings and
other clutter scatter the signal and the radiation is not uniform in all
directions.

NLOS

Base Maobile

Station NLOS d Station
‘ ~ X

Figure 2: A signal from a base station can travel either by a line-of-
sight path (LOS) or by non-line-of-sight (NLOS) paths

Using the MR data, we can plot a real picture of the relation between the
signal strength of the serving BS and the distance from it using the timing
advance variable. As we can see in Figure[3 the data may be noisy and we
therefore we wouldn’t be able to do any trend fits which could be useful
for developing propagation models. However, there is some observable
structure in the data, namely the stripe at TA = 30, and the clusters
centred about (TA,Signal Strength) = (40,17) and (50, 16).

2.2 Constraint satisfaction technique

(2.2.1)

(2.2.2)

Let us first assume that the signal strength decays monotonically with
distance from the BS and that this decay is the same in each direction, and
the same for each BS. With this assumption and the sequence of strongest
signal strengths from the surrounding BSs, we can geometrically constrain
the region in which the MS is located. Consider the idealized case of a
regular hexagonal cell.

To determine the possible region in which the MS is located, we construct
the perpendicular bisectors of each pair of base stations. For example, if
the signal strength from B.S; is stronger than BS5, then we can conclude
that the handset must lie on the side of the perpendicular bisector closer
to BS;. We repeat with all pairwise combinations available for that MR.
For a sufficiently large cell, we can use this information together with the
timing advance and find a smaller region where the handset must be (see
Figurefd). In the regular hexagonal case, the third strongest BS constrains
the handset to one of twelve sectors of the serving cell. However, due to
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(2.2.3)

60

50

401

30

Signal strength

201

Timing advance

Figure 3: Signal strengths of the serving BS plotted against the
timing advance
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Figure 4: Bisecting between the serving BS and the neighbouring
BSs

the symmetries of of a regular hexagon, considering additional indices
provides no additional information.

With an irregular distribution of the neighbouring cells, we break the the
hexagonal symmetries in the BS distribution and increase the number of
possible regions (Figure [6]). In this case, it would be best to start simple
and look at the three BSs with the strongest signal (as in Figure [7).
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Figure 5: Locating a handset using constraint satisfaction and TA

Figure 6: Irregular distribution of neighbouring BS

(2.2.4) It is likely that in an inner city environment the assumption of monotonic
signal strength decay does not hold because the signal strength of a BS
depends more on the signal path than the absolute distance from that BS.
There were many reports in the serving cell which reported neighbouring
BSs that were not one of the six closest to the serving BS. This means
that we overconstrain the region and we must somehow choose which
constraints are most important and try and minimise the number of soft
constraints that need to be broken to solve for the region. This is unlikely
to produce any useful result in a city environment but in a flat rural
environment, given a set of MR data we could count the number within
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Figure 7: Using three BSs with the strongest signal

each sector and look for clusters using this method.

2.3 Least squares estimate for handset location

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

In order to locate a handset with greater precision than the above method,
we need to consider the actual values of the reported signal strengths and
not just the order of the signal strengths to each neighbouring BS.

Assuming an obstacle-free radial propagation model, the isopower curves
around the ¢-th BS for a constant receiver height hy are circles with radius

h2. % Pr\
= (M) ®)

where hr, is the transmitter height of the i-th BS, Pr, is the transmission
power of the i-th BS and Pp, is the power of the received signal from the
i-th BS.

If we knew the handset heights, hg, the handset can then be located
exactly by triangulation between multiple BS’s and in the case with no
clutter and no noise, we can find the mutual intersection point of all of
the circles (Figure {)).

However with real data, the computed r; may no longer give a point of
mutual intersection due to noise and clutter in the environment. One way
to proceed in this case would be to obtain an estimate for the handset
location using a least-squares minimisation approach. We used the cost
function
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(2.3.5)

(2.3.6)

(2.3.7)

Figure 8: Triangulating the position of the handset

n 2
Fy) =3 (V= + (- — i) (4)
i=1
where n is the number of base stations involved in the data, x; and y;
are known (z,y) positions of the base stations and r; is the distance esti-
mated by applying equation [3 ¢.e. The cost function minimises the sum
of squared perpendicular distances from the idealised circles. hgr will have
to be estimated and the Study Group assumed a value of 1.5 m after
consultation with José Gil.

To test this method, we generated sample data by applying a random
relative error (of up to £50%) to the expected power levels. The results
of this can be seen in Figure

Note that in the obstacle-free case we need only 3 BSs to determine the
handset location exactly. We have data from 7 BSs so the system is
overdetermined. The Study Group investigated briefly whether we could
use this extra information to determine unknown characteristics of the
environment such as the height of the transmitters at the base stations.
Extending this idea, it was proposed that we could use measurement re-
ports to perform tomography on the domain. ¢.e.Find the isopower curves
in the domain. However, further research will be needed to determine
whether this is possible. To illustrate this point, we ran the triangulation
method with the transmitter heights of the base stations also as unknowns
in the system of equations. We managed to recover the positions and the
transmitter heights (See Figure [I0).

We ran a test of the triangulation method on real data using a sample
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Figure 9: Triangulating positions of handsets with known transmis-
sion heights
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Figure 10: Triangulating positions of handsets with unknown trans-
mission heights

of 200 MRs which included 21 different base stations. The results can be
seen in Figure [Tl Some clustering can be seen in what appears to be a
built up area but further research and information is required to validate
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(2.3.8)

(2.3.9)

this.
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Figure 11: Locating handsets using real data

If fading produces error of some additive factor in the signal strength, it
would be worth modifying the cost function in Equation @ to involve the
square difference in logarithms instead.

A final remark about this method is that the cost function used at the
Study Group is not convex and is likely to lead to multiple minima. Of
course the problem may not be convex in which case we should not go
for an artificially convex cost function that eliminates the other minima.
However, we should not introduce any unnecessary non-convexity because
that will tend to make the numerical minimisation more difficult.

2.4 Cluster analysis in signal space

(2.4.1)

(2.4.2)

Ideally, to determine whether phone call clusters exist, we would use co-
ordinates of the mobile handsets. As such data is not available at present,
we have to consider an alternative. The data that is available includes
signal strengths from neighbouring base stations, and also timing advance
and signal quality corresponding to the serving BS. It is considered that
handsets close by would have the same readings with such variables, unless
there is a high degree of distortion of the signals by buildings. We there-
fore consider finding clusters in signal space, rather than physical space,
to make the most of the data available.

The location of clusters is a standard branch of data mining. There are
a lot of methods suitable for all kinds of data, such as partitional, hierar-

10
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chical and density-based clustering with different definitions of a cluster.
Most of our successful cluster analysis was with DBSCAN, a density-based
clustering algorithm that looks for static clusters. A detailed description
can be found in the Appendix. The Study Group also tried a hierarchical
clustering algorithm on Minitab using the whole signal data set.

(2.4.3)  To carry out cluster analysis, parameters concerning the nature of clusters
have to be specified. How close together items must be to form a cluster
must be defined: perhaps within 100 m in physical space, or 1 dB in
terms of signal, although this has different implications when close to a
base station or further away, because of decay. In a hierarchal clustering
algorithm, linkage between items must also be decided upon: do you count
average distance between items, distance to the centroid, or Ward linkage,
a hybrid measure?

(2.4.4)  Runs of 30000 records were input to Minitab clustering analysis, using Eu-
clidean distance measurements and Ward linkage. No particularly strong
clusters were found, even with only 20% similarity (calculated from dis-
tance apart d, using the formula 100X (1 — d/dpne) where dpa, is the
maximum distance between a data point a point in a cluster. We can con-
clude that cluster analysis using the whole data was not very successful.
This is because the points are very sparse and clusters are found at the
origin as zeros must be used to pad for missing data.

(2.4.5)  There was more success when we looked for clusters in the two-dimensional
subspace of signal space formed by comparison of pairs of base stations.
Each plot in Figure shows the intensity of signals for different BS
pairs. Each point represents the signal strength of a certain handset to
the two stations. Applying DBSCAN on each dataset, we obtained clusters
coloured with blue, green, red, yellow or purple. Black points are tagged
as noise and are not classified in any cluster.

(2.4.6)  Ultimately, we want to look for clusters in the whole signal space, which
corresponds to clustering in a high dimensional space. See references
(ET16), (G11E) for more information on high-dimensional clustering. CLUTO,
a graph-partitioning algorithm, would be a good algorithm to start with

(see reference (B.II)).

(2.4.7)  Finally, we need to map clusters from the signal space to the physical
space. A method would be to map the signals in a large group of homo-
geneous samples (from cluster analysis) using the triangulation method in
Section with an appropriate propagation model for the serving base
station. Ideally, instead of locating each handset individually as with the
original algorithm, we want to apply it on the cluster itself where the
output would be an area in physical space which represents the location
of the cluster. This extended model could be validated using real signal

11
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Figure 12: Cluster analysis using DBSCAN on pairs of commonly
reported neighbours

strength data and location data from experiments around the base sta-
tion. However, these experiments should be repeated from time to time
because propagation path losses will change due to changes in vehicular
traffic and cityscape.

3 Conclusion

3.1 Final remarks

(3.1.1)  The two approaches we suggested were to

(a) Locate individual handsets in physical space and look for clusters in
the physical space.

(b) Identify clusters in the signal space data and map these to the phys-
ical space.

(3.1.2)  Cluster analysis on the MR data can tell us if clusters occur in signal
space. A detailed analysis of the data is required in order to conclude
that the cluster in signal space is indeed a cluster in the physical space.
In one particular experiment in (B.JI2) there have been measured signal
strength differences of up to 50 dB in a distance of 30 m in an inner city
area. However, there are many base stations in a built up area and it is
not unrealistic to suggest that there will be at least one base station in
line-of-sight with the clustered handsets.

(3.1.3)  Cluster analysis cannot be used to find clusters in real time because the
number of dimensions is high even for a small set of MR data. However, the

12
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(3.1.4)

triangulation method is fast enough to be run in realtime for a reasonably
sized data set. However it is unclear at present how accurate this method
is at locating clusters.

One possible method to find clusters in real time would be to run hypoth-
esis testing on the arrival of calls (assuming Poisson arrivals with rate A
where A is known). By observing the number of handsets connected to
the BS in intervals, we can test with an alternative hypothesis that \ has
increased. See reference (B8] for more details on testing the arrival rates
of calls.

3.2 Proposed further research

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

Using simple propagation models with power proportional to 1/r? or 1/r?
will not produce satisfactory results in built up areas. To produce better
propagation models we recommend Motorola gather experimental data of
signal strengths near one or more base stations. Using this information
we could also validate the triangulation method results in Figure [Tl

The success of a clustering algorithm depends greatly on the data set. We
recommend that Motorola investigate high-dimensional techniques per-
haps starting with graph partitioning algorithms on the MR data. An-
other type of clustering algorithm worth investigating is an overlapping
clustering algorithm such as Fuzzy c-means which allows data points to
be a member of one or more clusters.

Using extra information in the MRs, we could analyse the clusters in
signal space and possibly split the cluster up further depending on what
we find. For example, if the cluster moves rapidly in signal space with
time, we can assume that the handsets are moving. If we find that some
handsets of the cluster have a weak signal quality (related to the bit error
rate) compared to the others, we could conclude that there is a cluster
indoors and one outdoors. We recommend that once Motorola have found
clusters in signal space, they investigate the extra MR data available for
the clustered handsets.

Unfortunately we did not have time to explore mappings of the clusters
in signal space to the physical space during the Study Group and further
research will be needed to assess approaches.

4 Appendix

4.1 Conversion of latitude and longitude to z — y plane

(4.1.1)

The location of the BSs in the data set were given in latitude and longitude
coordinates. As the cost function (EquationH]) is defined on the x—y plane,

13
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(4.1.2)

(4.1.3)

Figure 13: Spherical Coordinates [ Wolfram MathWorld]

in order to use our least squares method in section 2.3 these coordinates
must be projected on to the x — y plane. The conversion from spherical
coordinates (r, 0, ¢) to cartesian coordinates (z,y, z) is

xr = rsin¢gcosf
y= rsingsind (5)
z= r COS ¢

where 7 is the radius of the Earth, 0 is the longitude and 7/2 — ¢ is the
latitude of the BS (Figure [[3). Alternatively, we can recast the problem
in spherical coordinates but we did not pursue this.

To minimise the distortion caused by the projection in the next step, we
rotate the sphere so that the serving BS (with latitude 7/2 — ¢ and
longitude 6y) lies on the South Pole.

The (x,y, z) coordinates were now mapped onto the = —y plane (by stere-
ographic projection) about the North Pole with the following formula

o) = (2 ) (6)

L—z/r’1—2z/r

and (2rY, 2rX) are the scaled projected positions with the y-axis pointing
due North. The scaling is an approximation as the scaling depends on
the distance from the origin but it should perform well for a small area of
interest.

14
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4.2 Density-based clustering algorithms

(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)

The key idea in a density-based clustering algorithm is that for each core-
point of a cluster, the neighborhood of a given radius has to contain at
least a minimum number of points (N,,;,). The shape of a neighborhood
is determined by the choice of a distance function for two points p and ¢,
denoted by d(p, ¢). In order to define what we mean by a cluster, we start
with some definitions.

Given d, we define the e-neighbourhood of a point p, denoted by N.(p) by

Ne(p) = {q € Dld(p,q) < ¢} (7)

We say a point p is directly density reachable from a point ¢ w.r.t. €, Npin
if

e p € N.q) and
e |N.(q)| > Npin both hold.

In words, p is directly density reachable from a point ¢ if there are more
than N,,;, points within ¢ of ¢ and p is one of them. Note that this
condition is not symmetric.

A point p is density reachable from a point ¢ w.r.t. € and N,,;, if there
is a chain of points py,....,p,, P1 = ¢, pn = p such that p,,; is directly
density-reachable from p; Vi < n. Again, this is not symmetric due to the
definition of directly density reachable.

Finally, a point p is density connected to a point ¢ w.r.t. € and N,,;, if
there is a point r such that both, p and ¢ are density-reachable from r
w.r.t. € and Nyin.

Given € and N,,;,, we define a cluster C' in a density based algorithm as
a subset which satisfies a

(a) Mazimality condition (if p € C and ¢ is density-reachable from p
then ¢ € C)

(b) Connectivity condition (for p,q € C then p and ¢ are connected)

Not all points will be members of a cluster, we define these points as noise.
Density-based algorithms are ideal for clustering noisy data because we
define a cluster using parameters related to the density of the points rather
than say in K-means where we specify the number of clusters in the data
beforehand which makes the algorithm more sensitive to noise.

15
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