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3.1 Introduction

During the one week Industrial Problem Solving Workshop held in June 2005 at the University of
Calgary, hosted by the Pacific Institute for the Mathematical Sciences, our group was asked to consider
a problem in seismic imaging, as presented by researchers from Calgary Scientific Inc. The essence
of the problem was to understand how the S-transform could be used to create better seismic images,
that would be useful in identifying possible hydrocarbon reservoirs in the earth.

3.2 Problem Description

Our group was presented with the following summary of the problem under consideration:

Calgary Scientific Inc. is currently developing a technique to classify pixels in seismic
pseudosections based on their local spectral characteristics. These are obtained from a
modified Gabor transform, in which only certain (k,, k,) wavevectors are represented
in the local spectrum of each pixel. This classification technique involves finding the
dominant peak in each local spectrum, and identifying the corresponding pixel with the
wavevector and amplitude of the dominant peak.
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This method proved ineffective since it is inflexible when one wants to investigate any in-
teresting features not associated with the dominant peak. The identification of secondary
peaks is complicated by the fact that dominant peaks typically cover several pixels of its
local spectrum; hence, the wavevector with the second largest amplitude is likely to con-
tain a significant contribution from the primary peak. The main goals were to efficiently
identify secondary peaks and to identify correlations amongst peaks from pixel to pixel.

Ideally, a fully processed seismic pseudosection should contain all the information the
interpreter needs to unambiguously identify potential drilling targets, such as reefs, anti-
cline traps, and so forth. This involves identifying layer boundaries on the pseudosection,
a process that can be considered as more or less equivalent to identifying the layers them-
selves as continuous groups of pixels. The presence of significant amounts of noise in the
data, and the accumulation of errors during the numerical steps of seismic processing, can
complicate this process by obscuring important features in the pseudosection. A final goal
is to improve the signal to noise ratio to facilitate interpretation of the pseudosection.

There were a number of researchers on the project with expertise in seismic imaging, and an
important first step was to understand what aspect of the imaging problem we were being asked to
study. However, since we would not be working directly with raw seismic data, traditional seismic
techniques would not be required. Rather, we would be working with a two dimensional image, either
a migrated image, a common mid-point (CMP) stack, or a common depth point (CDP) stack. In all
cases, the images display the subsurface of the earth with geological structures evident in various
layers. Figure 3.1 is a typical sample image.

Figure 3.1: A sample seismic section.

For a given image the local spectrum is computed at each point resulting in a surface similar to
Figure 3.2. The various peaks in the spectrum are used to classify each pixel in the original seismic
image resulting in an enhanced and hopefully more useful seismic pseudosection.
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Figure 3.2: A typical local spectrum.

Thus, the objective of this project was to improve the identification of layers and other geological
structures apparent in the two dimensional image (a seismic section, or CDP gather) by classifying and
coloring image pixels into groups based on their local spectral attributes.

3.3 Spectral Background

The local spectra of the pixels are obtained from the Stockwell, or S-transform, which is a time-
frequency spectral localization method similar to the short-time Fourier transform (STFT) [7]. The
S-transform of the one-dimensional function i (x) is defined as

> k 2p2 .
S(ZL’, k:) = / h($/)|—2|7re_(x_m) k /26—2mkx dxz’.

Because [~ S(z,k)dx = H(k), the Fourier transform of /(z), one can verify that h(z) is recover-
able from its S-transform. One can interpret the S-transform as a continuous wavelet transform where
the mother wavelet is a Gaussian in which the wavenumber & plays the role of a dilation. This def-
inition is easily generalized to higher dimensions and for the two-dimensional seismic images under
consideration the Stockwell transform takes the form

S(z,y, ky, ky) = / / W',y Yw(x — 'y — o ke, by )e” 270 ke e =2 Wk qo! dy (3.1)

where h(z,y) is the pixel intensity of a given location and w(z, y, k., k) is the corresponding two-
dimensional Gaussian window. The Stockwell transform S(x, v, k., k,) indicates the strength of the
frequencies with wavenumbers (&, k,) in a neighbourhood of the point (x, y). The attributes of in-
terest in this localized spectrum were identified to be the wavenumber (%, k,) and the magnitude of
any peaks in the function S(z,y, k., k,) as (x, y) varies across the image. These peaks are then used
to classify the pixels.

The focus, then, is on identifying peaks in the local spectrum. There remained three main issues
that the company wished to be addressed:
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In Calgary Scientific’s current algorithm, the four-dimensional S-transform is collapsed to a two-
dimensional image by identifying each pixel with the wavevector at which its local S-spectrum is
largest. That is, one particular peak is identified. This approach assumes that only one waveform
is important at any pixel in the image.

A reliable means of automated edge detection is elusive. Although the approach described above
can be used to produce a visually interpretable pseudo-image, it cannot be used to divide the
image into layers because the peak wavevector can vary from pixel to pixel within a particular
layer.

In Calgary Scientific’s implementation, the S-transform is evaluated at a set of positions {(z, y)}
which changes as the wavevectors change. This complicates any pattern matching because the
local S-spectra of adjacent (z, y) pixels are typically not defined on the same set of wavevectors.
There are some standard techniques to account for this but they all introduce artifacts in the
transformation. Is there a better way to compute the transform at all interesting positions (z, y)
and wavenumbers (k,, k,)?

Addressing I ssue One: I dentifying Spectral Peaks

In the sample data sets that we considered, the spectral peaks were all remarkably smooth, and
Gaussian-like. Whether this was a property of the data, or a property of the S-transform was not
investigated in detail. However, it appears that it is a reflection of the redundancy in the S-transform.
The smoothness, and Gaussian shape, suggested a number of approaches for identifying peaks. A
summary of the ones we considered were:

Reduce the two-dimensional peak selection problem to a series of one-dimensional problems.
Using the slicing technique, we can consider all one-dimensional sections of the spectrum and
analyze the peak structure of each slice. From this we identify the peaks of the entire spectrum.
In the one-dimensional slice, the spectrum appears smooth enough (twice differentiable), to find
and classify all the maxima.

Use a discrete, derivative to find critical points, and identify peaks. Since the function is smooth,
this technique should rapidly identify the few peaks there are. Ranking them by height is simple.

Represent the function as a sum of Gaussians and use a least squares technique to specify their
individual parameters. After that, the highest peaks are easily classified.

Identify the highest peak and subtract an appropriate Gaussian-like function centered at this
peak. After the subtraction, find the highest peak and repeat the procedure. It was believed that
this could expose high peaks shadowed by adjacent higher peaks.

Use clustering techniques to group the data around peaks, thus dividing all the data into several
groups associated with various peaks. Later these groups can be ranged in accordance to the
peak values.
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Code for each of these attempted techniques can be found in the Appendix. The subtraction method
was the most successful and is worth discussing in further detail. The location of the first peak is
identified by searching for the highest data point in the matrix of spectral points. In a neighbourhood
of this peak the function is approximated by a two-dimensional Gaussian with a width optimized to
best fit the data. This best-fit Gaussian is then subtracted from the spectrum, and we have a data set
with one peak removed. The process is then repeated (identify new peak, fit with Gaussian, subtract
Gaussian) until all significant peaks are identified. Empirically, the first three or four peaks might be
of interest.

Figure 3.3 gives a demonstration of how the method works. In the first panel, we see two large
narrow peaks. By matching with an appropriate Gaussian, those peaks are subtracted leaving the
spectrum in the middle panel. Two large, wide Gaussians are then identified as the next peaks and are
again subtracted leaving the third panel. This sequence is repeated until all the major peaks have been
identified. Symmetry in the spectrum allow the peaks to be removed in pairs.

Figure 3.3: A sequence of peaks being subtracted from the data.

Also interesting is why the other methods failed. The slicing technique failed because one-dimensional
slices do not uniquely identify two-dimensional peaks. However, the analysis of this proposed tech-
nique lead naturally to the two-dimensional derivative method.

The two-dimensional derivative technique identified far too many local extrema. Although most
of these were down in the noise level of the data, it took a significant amount of computing time to
distinguish between real peaks and extrema at the noise level of the spectrum. In the end, this method
was not computationally efficient.

The least squares technique also failed because of high computational costs. On the surface this
seems counterintuitive since the least squares methods is well-known for its speed. However, here
we were looking to optimize over a sum of Gaussians, where the heights, widths, and locations were
variables to be optimized. This is a highly non-linear problem and a computationally efficient method
was not obtained in the week of the workshop.

Finally, the clustering technique also failed for computational reasons. We tried using a standard
implementation of the k-mean algorithm [4], and discovered that classifying pixels for one-tenth of our
image took over two hours to compute. This was judged excessive, and well beyond what we hoped
for in classification.
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3.5 Addressing Issue Two: Edge Detection

The idea here is that near a linear feature in the original two-dimensional image, such as along an
edge, the local spectra should not vary much from pixel to pixel. Consequently, it should be possible
to identify correlations between spectral peaks as one moves from pixel to pixel. To test this idea,
one can begin with the peak identification algorithm in Section 3.4, and apply some statistical tests for
correlations.

Unfortunately, one week was not long enough to allow us to get both the peak detection algorithm
working and statistically analyse the results. A larger database of seismic images and corresponding
S-transforms would be required to pursue this avenue of research.

It is worth noting that the local spectral information of the S-transform varies slowly from pixel
to pixel, so there should be quite a high level of correlation. What is required is a statistical test that
can distinguish correlations that come from data with those that are merely a reflection of the slowly
changing nature of the S-transform.

There were also suggestions to use some alternatives of S-transform. In particular, the application
of methods which identify local spectra not at each individual pixel but from a group of adjacent pixels.
Some adaptive methods were proposed as follows:

e The localized Fourier method. This method also has an adaptive version which can be applied
to various time grids.

o Certain wavelet-like techniques for directional analysis, such as brushlets, ridgelets, or curvelets [8].
These wavelet bases were originally developed for directional image processing and identifying
slanted patterns. Such techniques seem directly applicable to these seismic images.

3.6 AddressingIssue Three: Computing the S-transform

This was probably the most challenging issue to address. A direct implementation of the S-transform
is highly redundant and leads to a massive amount of data, as each data point is transformed into a full
spectrum. For instance, a simple 100 by 100 image transforms into 100 million data points (100 x
100)2. The company does have some impressively fast algorithms for computing an approximation to
the complete transform, but with this level of redundancy, the question must be asked: are there better
approaches? We did not have access to their implementation of the algorithm, so direct investigation
of how it was implemented, or how it could be improved, were not possible. Some possible ideas to
pursue include:

e compute a sparse subset of the transform and apply interpolation for the intermediate points;
e compute a sparse subset of the transform and use this directly to estimate peaks;

e investigate if an analog of a fast transform (FFT, wavelet, etc.) could be applied to the S-
transform. In particular, the S-transform looks very similar to a phase-shifted continuous wavelet
transform, so there may be some close connections to the wavelet speedup;

e consider using a different transform, such as the Gabor or wavelet transforms, which also pro-
duce local spectral information, but have a fast implementation.



3.7. ADDITIONAL ISSUES: STEPPING BACK TO SEISMIC 37

Unfortunately, we did not have time to investigate these approaches in detail.

3.7 Additional Issues. Stepping Back to Seismic

In the end, this problem is really about seismic data imaging and analysis. It is important to realize
that in all the images so created, there are the important physical aspects that should be properly
modelled. That is, the images come from seismic experiments involving wave propagation; errors
in the image come from errors in our physical model; the geological structures we hope to identify
come from physical processes such as sedimentary deposition, geological faulting, and so on. It is
a bit frustrating to begin the mathematical analysis at the end of the data processing, where we have
an image that came from somewhere, and we want to analyse it. With sufficient mathematical and
computational tools, it makes sense to go back to the original seismic data, and apply our research
techniques to understand how this raw data can be used to reveal more accurately the features we seek
to identify. This is a big task, not easily accomplished in a week-long problem solving workshop. An
interested reader could refer to the work of the POTSI project (potsi.math.ucalgary.ca) or
the CREWES project (www .crewes.org) for further information on research in the mathematics
and geophysics of seismic imaging.
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3.9 Appendix

We include here some of our key MATLAB routines.
The main script for identifying peaks, in 2D and 3D

% PIXEL -- A script program for picking-up peaks in a local spectrum
% created by the S-Transforms and removing them

%

% By Yongwang Ma

% University of Calgary, Alberta, Canada

% May 20, 2005

%

% You may copy, modify and distribute the codes for purpose of
% research.

%

% process and plot in 2D
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load SHO2 LocalSpec 117 177 .mat;

dimension = 2;

npick = 10; % number of pairs of peaks to remove
[F,nmovie] = pick(LocalSpec,npick,dimension);

% process and plot in 3D

load SHO2 LocalSpec 117 177 .mat;

dimension = 3;

npick = 10; % number of pairs of peaks to remove
[F,nmovie] = pick(LocalSpec,npick,dimension);

The subtractional subroutine
function [F,nmovie] = pick(SparseLS,npick,dimension)

% pick - finds peaks and creates humps (gaussian-like function in 2D)
% in an image (spectrum) and substracts it from the original image

% By Yongwang Ma, May 18, 2005

% The University of Calgary
% Calgary, Alberta, Canada
%

% Input:

% SparseLS = input image, a matrix
% npick = the number of pairs of peaks needs to be found
% dimension = dimension of final iImages (2- 2D images; 3-3D images)

% Output:
% F = a structure consisting of parameters of the frames for a movie
% nmovies = a vector storing the order of the images (figures)

pix_mat = SparseLS;

NF_half = floor(size(pix_mat,1)/2);
NK_half = floor(size(pix_mat,2)/2);
f = [-NF_half:NF_half];

k = [-NK_half:NK_half];

M = size(pix_mat,1);

N = size(pix_mat,2);

sig = 1.50; % parameter controlling the width of Gaussian-like window
figure; % using only one figure, so finally only the most updated image is shc
for i1peak = 1:npick

pmax = max(max(pix_mat));

% find the position of maximum (peak) iIn the spectrum
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%

for m = 1:M
for n = 1:N
temp = pix_mat(m,n);
iIT (temp == pmax)
fO = m; kO = n;
end
end
end

% record the coordinates of peaks identified

fpeak(ipeak) = f0;
kpeak(ipeak) = kO;
% transform the coordinates
i (fO >= NF_half)

f 0 = fO-NF_half;

else

f 0 = -(NF_half-f0);
end
iIT (kO >= NK_half)

k 0 = kO-NK_half;
else

k 0 = -(NK_half-k0);
end
f0l=-Ff0;
k 01 = -k 0;

gaus_p = gausl(f O,k O,M,N,k,F,sig);
gaus_pl = gausl(f 01,k O1,M,N,k,f,sig);
sub_pmat = pix_mat-gaus_p.*pix_mat;
sub_pmatl = sub_pmat-gaus pl.*sub_pmat;

% Plot out results of picking

iIT (dimension ==2)
%Figure;
imagesc(sub_pmatl);

else % (3D)
%Figure;
surf(k,f,sub_pmatl);
axis([k() k(end) f(1) f(end) 0 3]
shading flat

end

iIfT ipeak==1
boundz=get(gca,’CLim”);

end

set(gca,’CLim” ,boundz);

figure;imagesc(gaus _p);
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% figure;

% amat=gaus_p.*pix_mat;
% plot(amat(f0,:));

% hold;

% plot(pix_mat(f0,:));
% plot(sub_pmat(f0,:));

pix_mat = sub_pmatl;
F(ipeak) = getframe;

end

% create a movie

nmovie = zeros(l,24*npick);

nrmovie = zeros(1,24*npick);

nnl = 1;

nn2 = 24;

nnrl = 24*npick;

nnr2 = 24*(npick-1)+1;

for In = 1:npick
nmovie(l,nnl:nn2) = in;
nrmovie(l,nnrl:-1:nnr2) = in;
nnl = nnl+24;
nn2 = nn2 + 24;

nnrl-24;

end

%play the movie forwards
movie(F,nmovie);

% play the movie backwards
% movie(F,nrmovie);

The subroutine to compute the Gaussian-like function

function gaus = gausl1(fO,kO,M,N,k,f,sig)
% gausl = subroutine to calculate a gaussian_like function (2D)

% fO = frequency, coordinate at which the centre of gaussian-like function

% located
% kO = wavenumber, coordinate at which the centre of gaussian-like
% funcition located

% M = total number of frequency samples

% N = totlal number of wavenumber samples

% k = wavenumber coordinates, a row vector

% ¥ = frequency coordinates, a row vector

% sig = a Factor, which determines the width of the gaussian-like function
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pll = zeros(M,N);

p22 = zeros(M,N);

stab = 1.e-8; % stability factor

for m = 1:M
pli(m,:) = (F(m)-f0)."2/M2+(k-k0)."2/N"2;
p22(m,:) = (F(m)/M)"2 + (k/N)."2;

end

gaus = exp(-2*pi~2*(pll./(p22+stab))/(sig 2));
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