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6.1 Introduction

MacMillan McGee Corp. is involved in the removal of soil contaminants using a process in which
a set of electrodes is placed in the soil and the soil is heated by passing a current through it.
The electrical conductivity of the soil, and hence the heat generated, is enhanced by pumping
heated water in at some of the electrodes and removing it at a well (or set of wells). The heated
water also provides some convected heating, which in the case of soil, far exceeds the conductive
heating.

The problem considered was that of estimating the temperature field in the region of interest,
the contaminated region, using measurements of electrical potential and current and also of
temperature, at accessible points such as the wells and electrodes and the soil surface. These
measurements in conjunction with the field equations for the electrical potential and temperature
provide a mathematical “Inverse Problem”. There is a known empirical relationship between
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86 CHAPTER 6. RESISTANCE MONITORING

temperature and electrical conductivity so that knowledge of one at any given place and time
also determines the other.

On the timescale considered, essentially days, the equation for the electrical potential is
static. At any given time the potential V satisfies the equation ∇ · (σ ∇V ) = 0. Time enters
the equation only as a parameter since σ is temperature and hence time dependent.

The problem of finding σ when both the potential V and the current density σ∂V/∂n are
known on the boundary of the domain is a standard inverse problem of long standing. See for
example Kohn and Vogelius [4]. It is known, with some restrictions on smoothness, that a unique
solution σ exists in spaces of dimension n ≥ 2. (In one dimension only the harmonic mean of σ
can be determined). It is also known that the problem is ill posed and hence that an accurate
numerical solution will be difficult especially when the input data is subject to measurement
errors. There is much literature on both theoretical and numerical aspects of the problem but
we were not able to find a recent comprehensive survey.

In Section 6.5 we examine a possible method for solving the electrical inverse problem which
could possibly be used in a time stepping algorithm when the conductivity changes little in each
step.

Since we are also able to make temperature measurements there is also the possibility of
examining an inverse problem for the temperature equation. There seems to be much less liter-
ature on this problem, which in our case is essentially, a first order equation with a heat source.
(We neglect thermal conductivity, which is small compared with the convection). Combining the
results of both inverse problems might give a more robust method of estimating the temperature
in the soil.

Removing soil contaminants using the combined techniques of electrical heating and fluid
injection changes the medium in a predictable fashion. On occasion, this method of contaminant
removal breaks down and the properties of the medium itself can suffer a sudden change. It is
important to be able to detect not only if this situation arises, but also where in the medium
the method breaks down.

The equations for the problem are given in the following section.

6.2 Equations

The basic equations of our problem are an energy equation, a quasi-static electrical equation
and a porous medium equation. The electrical equation for the potential V is:

∇ · (σ∇V ) = 0 (6.1)

where σ is the electrical conductivity. The equations for the fluid flow, D’Arcy’s law and
incompressibility, are:

~u = −k
µ
∇ p, ∇ · ~u = 0 (6.2)

where ~u is the fluid velocity, p is the pressure, µ is the kinematic viscosity and k is the perme-
abilty. For the energy balance with Joule heating as a source term we have [2]:

∂

∂t
(ρacaT ) + ~u · ∇(ρwcwT ) = ∇ · (κa ∇T ) + σ |∇V |2 (6.3)
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ρaca 2.5 × 106 J/m3/◦C
ρwcw 4.2 × 106 J/m3/◦C
κa 1 J/s/m/C
T0 100◦C
T 10 − 100◦C
V 100 − 200 volts
σ 0.1 − 0.01 /Ω/m
|~u| 0.3 m/day
φ 0.3
Sw 0.5 − 1
a 3 /◦C

Table 6.1: Some typical numerical values for this problem. Note that 1 watt sec = 1 Joule and
that for this problem, a typical length is 10 m. A typical time for the process is 60 days.

where T is the temperature, ρ is the density, c is the specific heat, κ is the thermal conductivity,
with the subscripts a and w denoting average and water respectively. The average values are
computed as ρaca = φρwcw + (1− φ)ρscs, κa = φκw + (1− φ)κs where the subscript s is for soil
and φ is the volume fraction of water.

In addition to these equations we have an empirical relation between the conductivity σ and
the temperature T

σ = σw
φαn

Pα
S2

w f(T ) + (1 − φ)σs (6.4)

where Sw is the water saturation, σs is a constant depending on the soil type, and αn and Pα

are empirically obtained constants. The function f(T ) is found to be linearly dominated and
is taken to be f(T ) = 1 + a(T − T0). Typically f increases by a factor of three for a 100◦C
increase in temperature from T0. Some typical numerical values, supplied by Bruce McGee, are
indicated in Table 6.1.

We now scale the energy equation (6.3) by writing

~x′ = ~x/L, t′ = t/τ, ~u′ = ~u/U, σ′ = σ/σ0, V ′ = V/V0, T ′ = (T − T0)/4T

to obtain the scaled equation (dropping primes):

λ
∂

∂t
T + ~u · ∇(T ) = ε∇ · (∇T ) + γσ |∇V |2 (6.5)

where λ, ε, γ are constants given by

λ =
ρacaL

Uτρwcw
, ε =

κa

ULρwcw
, γ =

σ0V
2
0

ULρwcw4T
.

If we take L = 10 m, τ = 20 days, U = 0.3 m/day, V0 = 100 volts, σ0 = 0.1 /Ω/m and
4T = 20◦C we find,

λ ' 1, ε ' 0.7 × 10−2, γ ' 1/3.
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88 CHAPTER 6. RESISTANCE MONITORING

Also with these scalings f(T ) = 1 + αT with α = a4T and we write σ = σ̃f(T ) with σ̃ and α
being O(1).

Boundary conditions for the problem are that the potential or current flow is given at all
electrodes and at the soil surface. Both being zero at infinity. For the fluid, pressure or velocity
is given at input and output wells. For the temperature we assume a known temperature at
input wells.

The small value of ε indicates the dominance of convection over conduction in the equations
and neglecting conduction gives a first order equation for T . This means that the temperature
along the characteristics is governed by either an initial temperature or a fluid temperature at a
fluid input. If these temperatures are not compatible, thermal shocks could appear. The small
conduction would smooth these shocks in an internal boundary layer of thickness ε1/2. Boundary
layers might also occur at output wells but we avoid these by assuming that the temperature at
output wells is that of the emerging fluid. In other words we do not apply temperature boundary
conditions at output wells.

6.3 A one dimensional example

We consider a one-dimensional problem with two electrodes that coincide with the input and
output wells. As boundary conditions we take constant current at the electrodes and a given
temperature at the input well. We will assume constant scaled ambient temperature zero as the
initial condition. In the one-dimensional case the velocity vector ~u becomes a constant which
we take to be 1. We also assume that σ̃ and α are constant.

The potential equation:
∂

∂x

(
σ
∂V

∂x

)
= 0 (6.6)

may be integrated to give I = σ∂V/∂x = I(t) a function of time only. With the given boundary
condition I is constant in both space and time. To find V we must first solve for T to obtain σ.
V may then be found by another integration.

With I constant, the scaled energy equation (6.5) becomes:

∂T

∂t
+
∂T

∂x
=

I2

3σ̃(1 + αT )
. (6.7)

This equation may be solved by the method of characteristics. We solve the equation on the
domain t > 0, 0 < x < L. The boundary conditions are T = 0 on t = 0, (ambient physical
temperature T0) T = g(t), t > 0 on x = 0. The characteristic equations are:

dt

ds
= 1,

dx

ds
= 1,

dT

ds
=

K

1 + αT
where K =

1

3

I2

σ̃
. (6.8)

These equations must be solved in two distinct regimes. Fluid already in the soil will be
initially at temperature T = 0. This fluid moves with unit speed and at any particular time,
since all the fluid will have been subjected to the same amount of heating, the temperature will
be the same. The appropriate initial conditions for a particle initially at x0 are, t = 0, T = 0,
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6.3. A ONE DIMENSIONAL EXAMPLE 89

x = x0. Since the input well is at x = 0 there will be a front at x = t, and this solution will
apply for x > t. Fluid that has been injected at the input well at time ti will enter the system
with a temperature T = g(ti), and its temperature will increase as it moves away from the well.
This fluid will remain behind the front and boundary conditions are t = ti, T = g(ti), x = 0.
The solution is:

T (x, t) =





1

α
(
√

1 + 2αKt− 1), x > t

1

α

[√
(1 + αg(t− x))2 + 2αKx− 1

]
, x < t.

(6.9)

If g(0) 6= 0, T will be discontinuous on x = t. A smooth solution may be obtained by in-
cluding the small conductivity term and introducing an interior layer by means of a substitution
ξ = (t − x)/ε1/2. Even when g(0) = 0 the derivatives of T will be discontinuous so that a
boundary layer will again be required in order to obtain a smooth function T . The change in
T , however, will only be of order ε1/2 in this case.

For a specific example we assume fluid is injected at a constant temperature T1 > 0 so
that g(t) = T1 for t > 0. The potential difference V between the electrodes is given by V =

I
∫ L

0
1/σ dx. This and the temperature at x = L can be measured. The potential difference is

given by:

V (L, t) =





L− t√
1 + 2αKt

+
1

αK

[√
(1 + αT1)2 + 2αKt− (1 + αT1)

]
, 0 < t < L

1

αK

[√
(1 + αT1)2 + 2αKL− (1 + αT1)

]
, t > L.

(6.10)

The temperature at x = L is given by:

T (L, t) =






1

α
(
√

1 + 2αKt− 1), 0 < t < L

1

α

[√
(1 + αT1)2 + 2αKL− 1

]
, t > L.

(6.11)

Measurement of these quantities would allow the calculation of the only unknown quantities
α and σ̃. It would also give some indication of whether the assumption that α and σ̃ are constant
is a reasonable one.

The quantities above are calculated using α = 0.4, K = 1.25, L = 1 and T1 = 0.5. Since
T1 6= 0 there is a temperature front along the characteristic x = t. In Figure 6.1 we show the
overall resistance which with constant current is just V . We see that V becomes constant after
the front reaches x = L. In Figure 6.2 we show the temperature as a function of both time and
position. The movement of the front is clear.
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90 CHAPTER 6. RESISTANCE MONITORING

Figure 6.1: Overall resistance.

Figure 6.2: Temperature as a function of space and time.
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6.3. A ONE DIMENSIONAL EXAMPLE 91

If we prescribe the potenal V at the electrodes the current I becomes a function of time
which is determined by integrating the potential equation (6.6) with respect to x from x = 0 to
x = L. If we take the potential difference between the electrodes to be 1, we find

I(t) = 1/

∫ L

0

1

1 + αT (x, t)
dx. (6.12)

The equation (6.7) then becomes non-local and an analytic solution is no longer possible. The
equation can however still be solved numerically. With constant σ̃ the results are similar to
those for the case of constant current.

In some numerical examples we look at the effects which occur in the current flow and
temperature at the well (both measurable quantities) due to an anomaly in the conductivity
where we assume that σ̃ has a piecewise change over a region beginning at a specified time. We
find that in this simple case of a single anomaly measurements at the boundary are enough to
show the time at which the anomaly occurs, its location and its magnitude. With more than
one anomaly information may be obtained but there is a loss of uniqueness.

Numerical solutions have been found for an anomaly occurring at time 30 days over the
region between 4 and 5 metres. In Figure 6.3 we show graphs of the overall resistance and
in Figure 6.4 the output temperature for the case with and without an anomaly which is an
increase in scaled conductivity σ̃ from 1.0 to 1.5. Notice that the overall resistance drops at the
time the anomaly occurs. The temperatures in the cases with and without anomaly also start
to separate at this time. There are also noticeable changes in the temperature at the times that
the characteristics through the ends of the anomalous region reach the output well. Since the
speed of propagation along the characteristics is known this enables us to locate the anomaly.
The percentage change in the resistance at the jump allows us to estimate the percentage change
in σ̃.

In Figures 6.5, 6.6 we show similar graphs with an anomaly which is a decrease in scaled
conductivity σ̃ from 1.0 to 0.7.
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Figure 6.3: Overall resistance anomalous increase in conductivity.

Figure 6.4: Temperature (Zoomed). Anomalous increase in conductivity.
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Figure 6.5: Resistance. Anomalous decrease in conductivity.

Figure 6.6: Temperature (Zoomed). Anomalous decrease in conductivity.
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6.4 The three dimensional case

We make here a few remarks extending the one-dimensional case. These have not been developed
but could be the basis for further analysis. The equations for the fluid flow are not coupled to
the other equations and the fluid flow is essentially determined by the boundary conditions at
the wells. These are Dirichlet, if the pressure head is given, or Neumann, if the velocity is given.

In the case where the permeability, viscosity and electrical conductivity are constant, the
pressure head and the electrical potential both satisfy the Laplace equation, if the boundaries
and boundary conditions match (i.e. both Dirichlet or both Neumann) the fluid streamlines and
the current streamlines will coincide. These streamlines are also characteristic curves for the
energy equation and since they will begin and end at a well the energy equation (6.3) may be
integrated along a streamline to give:

T2 − T1 =

∫ r2

r1

I2(r)

σ

1

ρwcwu(r)
dr (6.13)

where r is the distance along a streamline and u(r) is the fluid speed along the streamline.
Subscripts 1 and 2 refer to the wells at the beginning and end of the streamline. The temperature
T1 can be controlled, sudden changes in T2, which should be local due to the small thermal
conductivity, would indicate an anomaly along the corresponding streamline (characteristic).

Both the compressibility and potential equation can be integrated along a stream tube to give
constant volumetric flow Q =

∫
∂A
~u · ~n dA and constant total current flow I =

∫
∂A
σ∇V · ~n dA

along a stream tube (here ∂A is a surface perpendicular to the stream tube). These also can be
monitored at the wells.

In conditions of steady state temperature one can use the incompressibility equation (6.2)
and the potential equation (6.1) to reduce the energy equation (6.3) to:

∇ ·
(
~uT − 1

ρwcw
σV∇V

)
= 0. (6.14)

Integrating this along a stream tube we see that
∫

∂A

(
~uT − 1

ρwcw
σV∇V

)
· ~n dA = C (6.15)

is also constant along a thin stream tube. At a well this is essentially

QT − 1

ρwcw
V I.

By monitoring these quantities at the two wells we should be able to detect the occurrence of
anomalies in the conductivity. Collating this with the temperature measurements might allow
us to pinpoint any anomalies in both time and space.

6.5 The inverse potential problem.

As stated in the introduction, by making a series of impedance measurements about the bound-
ary of the well site an image of the conductivity distribution can be determined. This is com-
plicated by the fact that not all of the boundary is available for measurement. If however we
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6.5. THE INVERSE POTENTIAL PROBLEM. 95

concentrate on sudden changes in conductivity, a detailed image is not required and what follows
may be considered rather as a first step in their detection.

6.5.1 Solution of the forward problem and a discussion of the resolv-

ing power

To simplify the inverse problem we consider a vertical section of soil of thickness w and cylindrical
cross section of radius r0. The domain is surrounded with N equally spaced electrodes and we
assume that a given electrode can either supply current or monitor voltage. Electrodes extend
the width of the section and do not overlap ensuring that the width of an electrode, 2a, satisfies
the bound 2aN < 2πr0. For a given set of electrodes there are many possible applied current
patterns. Our assumption will be that a current of I is applied between two of the electrodes and
the remainder of the electrodes monitor the resulting voltage at the boundary of the domain.

The forward problem is given a conductivity, σ(r, θ, z), to determine the potential ϕ(r, θ, z)
satisfying

∇ · (σ∇ϕ) = 0 (6.16)

and the boundary condition

J(θ) = σ
∂ϕ

∂r

∣∣∣∣
r=r0

=





I

2aw
, α− a

r0
≤ θ ≤ α + a

r0

− I

2aw
, β − a

r0
≤ θ ≤ β + a

r0

0, all other θ.

(6.17)

The angles α, β are the angular positions of the electrodes. An estimate of the sensitivity of
the potential to changes in the conductivity can be determined by assuming the conductivity is
piecewise constant

σ =

{
σ0, r1 ≤ r ≤ r0
σ1, 0 ≤ r < r1.

(6.18)

Since both the potential and the current are continuous at r = r1 one has the conditions

ϕ|r=r−1
= ϕ|r=r+

1
, σ1

∂ϕ

∂r

∣∣∣∣
r=r−1

= σ0
∂ϕ

∂r

∣∣∣∣
r=r+

1

. (6.19)

Solving (6.16) with (6.18)-(6.19) with the constraints that ϕ is periodic in θ and constant
with respect to z yields

ϕ(r, θ) = ϕ0 +

∞∑

k=1

fk(r)[ak cos(kθ) + bk sin(kθ)]

where

fk(r) =





(
1 +

σ0 − σ1

σ0 + σ1

)(
r

r1

)k

, 0 ≤ r < r1
(
r

r1

)k

+

(
σ0 − σ1

σ0 + σ1

)(r1
r

)k

, r1 ≤ r ≤ r0.

(6.20)
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Figure 6.7: Resolving power for various configurations.

Applying the boundary condition (6.17) yields the following expression for the potential on the
boundary of the domain

ϕ(r0, θ) = ϕ0 +
Ir0
σ0aw

∞∑

k=1

1 + µρ2k

1 − µρ2k

1

k2
sin

(
ka

r0

)
[cos k(θ − α) − cos k(θ − β)]

where µ = (σ0 − σ1)/(σ0 + σ1) and ρ = r1/r0.
Denote ϕ as the potential at r = r0 when σ1 = σ0. Using this definition one can define the

resolving power as

δ =
ϕ− ϕ

ϕ
=

∞∑

k=1

[
1 + µρ2k

1 − µρ2k
− 1

]
1

k2
sin

(
ka

r0

)
[cos k(θ − α) − cos k(θ − β)]

∞∑

k=1

1

k2
sin

(
ka

r0

)
[cos k(θ − α) − cos k(θ − β)]

.

Figure 6.7 plots max |δ(θ)| as a function of ρ in the case of N = 16 electrodes. In addition,
a = 0.1, r0 = 1 and σ1/σ0 = 0.9. Illustrated are cases where the current is applied at adjacent
electrodes (β − α = π/8), electrodes at right angles (β − α = π/2) and opposite electrodes
(β − α = π). Clearly with an anomaly centered at r = 0 current applied at opposite electrodes
is the most sensitive.

6.5.2 An iterative technique for solving the inverse problem

The method implemented for solving the inverse problem is to use the sensitivity theorem usually
attributed to Geselowitz [3]. For a given region of conductivity σ an application of current I
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applied between electrodes A and B generates a potential field ϕ(σ) inside the volume. The
potential between electrodes C and D is denoted ϕCD. By applying the same current between
electrodes C and D one obtains the potential ψAB between electrodes A and B. One may note
that

φCD(σ) =
1

I

∫

Ω

σ∇φ(σ) · ∇ψ(σ) dΩ = ψAB(σ).

If the conductivity of the region changes to σ + ∆σ then the change in the transfer impedance
between electrodes A, B and C, D is

∆Z = φCD(σ+4σ)− φCD(σ) = φCD(σ+4σ)− ψAB(σ) = −1

I

∫

Ω

∆σ ∇ψ(σ) · ∇φ(σ+ ∆σ) dΩ.

(6.21)
To solve the inverse problem one assumes a conductivity distribution σ and solves the corre-
sponding forward problem obtaining ϕ. Taking the difference between the calculated ϕ(σ) and
the measured ϕ(σ + 4σ) yields ∆Z. In principle we can use this information to solve for ∆σ
and find the conductivity distribution.

Consider a mesh {Ωk}M
k=1 consisting of M elements each having its own conductivity σk. In

this way one may approximate the conductivity distribution as a finite sum of characteristic
functions

σ =
M∑

j=1

σjχ(Ωj), χ(Ωj) =

{
1, (x, y) ∈ Ωj

0, otherwise.

We refer to the collection of conductivities, {σj}M
j=1, as the vector ~σ ∈ R

M . The corresponding
discrete version of the sensitivity theorem (6.21) becomes

∆Z = −
M∑

j=1

∆σj

∫

Ωj

(∇ϕ · ∇ψ) dΩj. (6.22)

In this way ∆Z refers to the difference in voltage between electrodes C and D when the input
electrodes are A and B and the conductivity changes from σ to σ + ∆σ.

During the inversion process a number of different current injection patterns are applied. If
for example there are E electrodes and current is applied at adjacent electrodes then there are
E−1 patterns and therefore a total of (E−1)×(E−1) readings.1 This collection of measurements

on the boundary over the class of chosen patterns generates the vector ∆ ~Z = ~ζ− ~ϕ ∈ R
N . Here

~ζ is the vector of measured voltages and ~ϕ is the vector of the calculated potentials for the
current conductivity distribution σ. The final form of the (6.22) is

∆~Z = S∆~σ (6.23)

where the S is an N ×M matrix whose elements are

Sij = −
∫

Ωj

(∇ϕi · ∇ψi) dΩj (6.24)

1This assumes the capability of measuring the voltage at the injection electrodes.

π



98 CHAPTER 6. RESISTANCE MONITORING

the result in cell j obtained when applying pattern i. Current applied to the electrode pair A, B
generates ϕi while current applied at C, D generates ψi. Because of symmetries N = E(E−1)/2.
One of the difficulties with the reciprocity theorem is that STS is ill conditioned and may be
singular if N ≤ M . Another problem encountered in using the reciprocity theorem is that
one cannot use a basic FEM package to solve the forward problem. Direct access to the basis
functions of each cell is required to compute S.

Because the problem is ill posed, Tikhonov regularization is used to determine the conductiv-
ity. With this method, rather than solving (6.23), one attempts at the kth iteration to minimize
the functional

f(∆~σk) =
∥∥∥S∆~σk − (~ζ − ~ϕk)

∥∥∥
2

+ λ ‖F~σk‖2 (6.25)

which indicates a trade off with obtaining a solution to S∆~σk = ~ζ− ~ϕk and not letting ‖F~σk‖ get
too large. Typically F is chosen to penalize solutions with properties that one wants to avoid.
In our case, we want to avoid solutions with discontinuities so F is a smoothing operator. Since
the current implementation is a Laplacian operator, F is an M ×M matrix with Fij = −1 if
node i is connected to node j (i 6= j) and Fii = number of elements connected to node i. If one

lets the regularization parameter λ → 0 one obtains a generalized solution of S∆~σk = ~ζ − ~ϕk.
We now detail the algorithm used to generate the solution.

Step 1: The first step is to determine an appropriate estimate for a homogeneous conductivity.
This is accomplished by setting the conductivity of each cell to one and generating the
solutions of the forward problems

∇ · (∇ϕ0) = 0,
∂ϕ0

∂n

∣∣∣∣
∂Ω

= ~J

where each of the applied current patterns, ~J , are used in turn. The effective homogeneous
conductivity σ0 is chosen to minimize

∥∥∥∥~ϕ0
1

σ0
− ~ζ

∥∥∥∥
2

. (6.26)

Solving (6.26) gives the least squares solution

σ0 =
~ϕ0 · ~ϕ0

~ϕ0 · ~ζ
.

Every cell is set to this initial conductivity giving the constant initial vector ~σ0 = {σ0}M
i=1.

The iteration parameter k = 1.

Step 2: The next step is to generate perturbations in the conductivity. At this point we solve the
forward problems

∇ · (σk−1∇ϕk) = 0, σk−1
∂ϕk

∂r

∣∣∣∣
∂Ω

= J ;

for the E−1 current patterns and generate the vectors ~ϕk by appending the collection the
boundary values at the electrodes for each of the applied patterns (as done in Step 1). For
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Figure 6.8: Initial anomaly and reconstructed solutions for two values of λ.

all subsequent steps the forward solution in all of the cells is required and not just those
corresponding to electrodes. Using the forward solutions one computes the sensitivity
matrix, S, from expression (6.24). At this point ∆~σk is chosen to minimize (6.25) and as
a result, satisfies

(
STS + λF TF

)
∆~σk = ST (~ζ − ~ϕk) + λF TF~σk−1.

Step 3: The updated conductivity is set to ~σk = ~σk−1 + ∆~σk and we check the stopping criterion.
If ‖∆~σk‖ ≥ ε then k 7→ k + 1 iterate S, ~σk, ~ϕk and return to Step 2. Otherwise the loop
terminates.

For the numerical simulations we chose N = 16 electrodes and a homogeneously conductive
region of σ = 1 with a small conductive anomaly with σ = 0.9. The mesh has M = 279
nodes. Figure 6.8 displays the original anomaly and two reconstructed solutions corresponding
to λ = 1 × 10−4 and λ = 10 respectively.

Clearly the cylindrical geometry is an idealization of the actual geometry. However, the
promising results of the reconstructed solutions shown here indicate that detecting sudden
large-scale changes in conductivity is certainly feasible. Moreover, for a given configuration
of electrodes, estimates can be obtained for the size of the smallest detectable anomaly of a
given strength.

6.6 Summary

Effort was focussed on the detection of sudden localised anomalies in the conductivity and
progress was made on a simple one dimensional model for the coupled problem and on a two di-
mensional model of the uncoupled potential problem. These investigations showed some promise
and could be developed further.
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Since substantial literature exists on the potential problem, further work should begin with
a thorough literature search. The MacMillan McGee problem may present some novel aspects.
Since measurements will only be made on an actual decontamination process, multiple current
inputs will not be available. Measurements will also only be available at electrodes, wells and
the soil surface so that the effect of boundary conditions at “infinity” should be considered. This
all adds to the illposedness (see Cheney, Issacson and Newell [1])

The use of temperature as well as potential measurements for the inverse problem might also
prove fruitful. This would require an efficient algorithm for the numerical solution of the three
dimensional coupled forward problem.

Changes in overall resistance similar to that found in the one dimensional example have been
observed in practice and it would be interesting to measure temperatures at the output wells to
see whether effects predicted by the one dimensional case do actually occur and whether they
are spatially localised.
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