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1 Introduction

In order to implement automated control of a robot arm, it is critical to have an accurate
description of the arm’s position, orientation, and velocity in 3-space. Such a description can
be facilitated with data about how the arm is aligned with the gravitational and magnetic
fields of the Earth, which will determine two of the axes in the Earth frame E.

Using three accelerometers, TIAX can provide data on the orientation of the Earth’s
gravitational field with respect to the body frame B of the robot arm. The accelerometers
are aligned in a sensor frame S which may not be orthogonal. However, the processes by
which the accelerometer data are calibrated, converted into gravitational measurements,
and transformed into an orthogonal basis are proprietary. Therefore, for the purposes of
this report, we consider the input to be the body frame data.

Similarly, three magnetometers are used to provide data on the orientation of the Earth’s
magnetic field with respect to the body frame and three gyroscopes are used to provide data
on the angular velocities of each axis making up the body frame.

In this work, we focus on the transformation of this data from the body frame B into
the Earth frame E. As described above, the process by which the input (body frame data)
is determined is proprietary, and the process which uses the output (Earth frame data) to
determine the robot’s position can vary with the consumer. However, we do provide some
suggestions for handling these processes in Section 9.

We examine the transformations in four different contexts, as described more fully in
the following sections:

1. Euler angles

2. Quaternions

3. Rotations about a single axis
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Figure 1: Body and earth frames for (φ, θ, ψ) = (π/6, π/6, π/3).

4. Transition matrices

We find that the contexts that do not rely upon angle definitions are superior. Unfor-
tunately, the consumers often demand the contexts that do.

2 The Euler Angle Formulation

In order to control a robot, engineers must know the position and velocity of its various
components in the rest frame of the earth E. However, since the sensors are mounted on
the device, we can obtain measurements only in the body frame B.

We assume both coordinate systems to be associated with unit vectors Bi and Ei re-
spectively, where i = 1, 2, 3. Each coordinate system is further assumed to be right-handed.
Since the sensor body is considered to be cylindrical, we assume that B1 is aligned along
the axis of the cylinder. E1 is chosen to be aligned to the horizontal component of magnetic
north, and E3 is chosen to point downward. (See Figure 1).

Measurements GB (where the superscript “B” stands for “body frame”) are taken from
accelerometers and measurements HB are taken from magnetometers. In order to transform
these measurements into the earth frame, we introduce the standard change-of-coordinates
matrix TE←B , defined by

GE = TE←B GB, (1)

where the superscript “E” stands for “Earth frame.” The same relation holds for H. Note
that since we are implementing a rotation, TE←B is an orthogonal matrix, so

TE←B = T−1
E←B = T TE←B (2)

Currently, in order to understand the position of the robot arm, the customer requires a
set of Euler angles, which decompose the rotation into three separate rotations about three
separate axes. (These Euler angles are then fed into other software to determine position
and velocity.)
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Figure 2: Euler-angle decomposition for (φ, θ, ψ) = (π/6, π/6, π/3). In each case, we look
down along the axis of rotation. Note that each angle is measured in the proper direction
when viewed from the tip of the axis vector.

For the purposes of this manuscript, we assume that the Euler angles are the ones that
transform the Earth frame into the body frame. This seems to be different from what TIAX
does currently, but is consistent with most of the literature. For our purposes, we will use
the sequence of steps which is (believe it or not) alternately called the “xyz convention” in
[1] or the “zyx convention” (by most of the rest of the civilized world).

In particular, first the Earth frame is rotated a heading (or yaw) angle ψ ∈ [−π, π) about
the E3-axis (negative z-axis) to form the intermediate frame B′′ (the notation is historical).
(See Figure 2.)

Next, the intermediate frame B′′ is rotated a pitch angle θ ∈ [−π/2, π/2] about the B′′2
axis to form a new intermediate frame B′. Note that

1. The length of the interval is only π; the reason for this reduction will be explained
below.

2. In some of the literature, θ is restricted to lie in [0, π]. However, this seems to be
the proper choice for other conventions—for the convention we are using, this is the
proper choice.

3. The choice of interval ensures that cos θ ≥ 0.

Finally, the intermediate frame B′ is rotated a roll angle φ ∈ [−π, π) about the B′1 axis
to obtain the body frame B.

Because we are rotating about the “z-axis” of our E-coordinate system first, then the
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resulting “y-axis”, then the resulting “x-axis”, this motivates the terminology “zyx conven-
tion”.

Mathematically, the Euler-angle method decomposes the transition matrix as follows:

TB←E = TB←B′ TB′←B′′ TB′′←E . (3)

For simplicity of notation, we define the following matrices:

Eφ = TB←B′ =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ



 (4)

Eθ = TB′←B′′ =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 (5)

Eψ = TB′′←E =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1



 (6)

Note that:

1. Each matrix contains only one of the Euler angles.

2. Each matrix is orthogonal (for instance, E−1
θ = ETθ ).

3. The inverse of each matrix is equivalent to rotating through the negative angle (for
instance, E−1

φ = E−φ = ETφ ). This convention makes sense only if θ ∈ [−π/2, π/2].

At first glance, it may seem that the signs in Eθ are not consistent with the other two
matrices. However, if we treat the rows cyclically, then the last row of Eθ plays the same
role as the second row in Eφ, and hence it contains the positive sin θ term.

To verify that this is indeed the proper direction, we refer to Figure 3, which shows
the first rotation from the E frame to the B′′ frame to the E frame. Examine the triangle
with hypotenuse along E1. Note that the coordinates of the end of the E1 arrow will
have coordinates (1, 0, 0) in the E frame, but (cosψ,− sinψ, 0) in the B′′ frame. Thus the
transition matrix interpretation is now correct. Moreover, if one examines the triangle with
hypotenuse along B′′1 , we see that B′′1 = E1 cosψ + E2 sinψ, which is another check.

With these definitions, we have

TB←E = EφEθ Eψ . (7)

Thus, due to the nature of the matrix multiplication, the matrix corresponding to the “x-
rotation” comes first, then the “y-rotation”, then the z-rotation. This motivates the naming
of this decomposition as the “xyz convention” in [1].
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Figure 3: Rotation about z-axis.

Performing the multiplication in (7), we obtain

TB←E =





cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ



 . (8)

This result may be compared favorably to the result in [1], equation (A.11xyz) if we note
that

1. Our notation switches the roles of ψ and φ. That is, in [1] φ is yaw and ψ is roll.

2. The third edition of [1] has a typo in the lower-left entry; the entry is correct in the
second edition.

However, for our purposes it is more useful to have the inverse transformation TE←B ,
which is given by

TE←B = T TB←E =





cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ



 .

(9)
We now verify mathematically that φ and θ are chosen to align the downward axis. We

note that with E3 pointing down,

GE =





0
0
g



 , (10)
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where g is the acceleration of gravity. This is actually true only in the ideal case. With
measurement errors included, the constant g in (10) would be replaced by |GE|, which
would vary. However, for the purposes of this manuscript we assume that |GE| = g. This
assumption affects only our error analysis, and will be discussed further in the next section.

Substituting this result into (1) and using our result in (2), we obtain

GB = T TE←B





0
0
g



 , (11)





GB
1

GB
2

GB
3



 = g





t31
t32
t33



 , (12)

where tij is the ijth entry of TE←B . (Note the transposition operator above.) Then
substituting our result in (8) into the above, we have





GB
1

GB
2

GB
3



 = g





− sin θ
sinφ cos θ
cosφ cos θ



 . (13)

From the first equation, we have

θ = − sin−1

(

GB
1

g

)

. (14)

Note that

1. Since we are performing a rotation, |GB | = g, so the equation is well-defined.

2. Equation (14) defines θ uniquely in the region [−π/2, π/2], as asserted above.

3. As long as |θ| 6= π/2, the second and third equations in (13) determine φ uniquely in
[−π, π). (Both equations are necessary to determine the proper quadrant.)

4. If |θ| = π/2, the second and third equations in (13) have right-hand side zero and φ
cannot be determined uniquely.

This last item is one downside to the Euler-angle decomposition. Algebraically, this can
also be seen by substituting θ = π/2 into (9), in which case we obtain

TE←B(θ = π/2) =





0 sinφ cosψ − cosφ sinψ cosφ cosψ + sinφ sinψ
0 sinφ sinψ + cosφ cosψ cosφ sinψ − sinφ cosψ
1 0 0





=





0 sin(φ− ψ) cos(φ− ψ)
0 cos(φ− ψ) − sin(φ− ψ)
1 0 0



 . (15)
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Figure 4: Degeneracy of Euler-angle decomposition for θ = π/2: (a) (φ,ψ) = (2π/3, π/2),
(b) (φ,ψ) = (π/3, π/6).

Therefore, in this case φ and ψ cannot be determined explicitly; only their difference can
be determined uniquely. (See Figure 4; the results for θ = −π/2 are similar.) Note from
Figure 4 that in the case presented, B1 = −E3. This alignment of the B1 and E3 axes is
typical. In this special case, only two rotations are needed to move to the Earth frame; the
third is superfluous.

Thus, in any neighborhood of θ = ±π/2, φ and ψ take on all of their values. In this
sense, these two points are essential singularities in terms of Euler angles. The situation is
much the same as what happens on the earth where all values of longitude are attained in
any neighborhood of the north and south poles (±π/2 latitude).

Nonetheless, one may be able to recover the values of both φ and ψ at θ = ±π/2 in
a limiting sense as the robot arm moves toward the singular values in θ. The existence of
this trajectory limit depends on whether the arm either moves transversely to θ = ±π/2, in
which case φ and ψ change slowly and approach limiting values, or conversely the arm spirals
into the singularities at θ = ±π/2, in which case φ and ψ change rapidly as θ → ±π/2.
This result is particularly important if the robot arm physically can move to but not through
θ = ±π/2.

However, this is simply an artifact of the way we chose to decompose our rotation; the
rotation itself is unique. As will be seen later, the method of quaternion vectors avoids
this problem. To show that the degeneracy leads to a discontinuity, consider the following
problem:

GB = g





√
1 − ǫ2

0
ǫ



 , |ǫ| ≪ 1. (16)

From (13) we see that as |ǫ| → 0, sin θ → −1+, so θ → (−π/2)+. Moreover, sinφ = 0, so
φ = 0 or φ = π. Since cos θ > 0, we have from the last equation that cosφ has the same
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sign as ǫ, so we have

lim
ǫ→0+

φ = 0, lim
ǫ→0−

φ = π. (17)

In the error section we will address the sensitivity of the angle calculations to the
coordinates of GB .

Lastly, we demonstrate mathematically that ψ is chosen to align the magnetic axis.
Assuming that θ and φ have already been calculated, we may use (7) to break our transition
problem for H in (1) into known and unknown parts, as follows:

HE =





HE
1

0
HE

3



 = TE←BHB = ETψE
T
θ E

T
φHB, (18)

Eψ





HE
1

0
HE

3



 = ETθ E
T
φ





HB
1

HB
2

HB
3



 , (19)

where we have used the fact that E1 is aligned with the horizontal component of magnetic
north to conclude that HE

2 = 0. (This also implies that HE
1 6= 0.) Since the right-hand

side is known, in principle ψ may be calculated from (19). The details are left for the next
section.

3 Implementation and Error Analysis for Euler Angles

Next we describe how to actually compute the Euler angles given the sensor data, as well
as the errors incurred. θ has already been calculated in (14). Now taking the ratio of the
last two components of (13), we obtain

GB
2

GB
3

= tanφ (20)

φ = tan−1

(

GB
2

GB
3

)

, sgn(φ) = sgn(GB
2 ), (21)

where the second equality comes from the fact that cos θ ≥ 0.

Calculating ψ is a little bit trickier. For future reference, we compute the matrix on the
right-hand side:

ETθ E
T
φ =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ









1 0 0
0 cosφ − sinφ
0 sinφ cosφ





=





cos θ sin θ sinφ sin θ cosφ
0 cosφ − sinφ

− sin θ cos θ sinφ cos θ cosφ



 . (22)
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Substituting our results from (4)-(6) and (22) into (19) and extracting only the first two
equations, we have that





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









HE
1

0
HE

3



 =





cos θ sin θ sinφ sin θ cosφ
0 cosφ − sinφ

− sin θ cos θ sinφ cos θ cosφ









HB
1

HB
2

HB
3





HE
1

(

cosψ
− sinψ

)

=

(

HB
1 cos θ +HB

2 sin θ sinφ+HB
3 sin θ cosφ

HB
2 cosφ−HB

3 sinφ

)

.(23)

Taking the ratio of these components, we have

− tanψ =
HB

2 cosφ−HB
3 sinφ

HB
1 cos θ +HB

2 sin θ sinφ+HB
3 sin θ cosφ

ψ = − tan−1

(

y1

y2

)

, (24)

where

y1 = HB
2 cosφ−HB

3 sinφ , (25)

y2 = HB
1 cos θ +HB

2 sin θ sinφ+HB
3 sin θ cosφ . (26)

Unfortunately, (24) determines ψ only up to a factor of π. In other words, ψ ± π
(whichever is in the proper range) also satisfies (24). When computing φ, we used facts
about the sign of certain coefficients to aid us. We can do this here only by knowing the
sign of HE

1 . On a physical level, with one value of ψ, the magnetometer readings have a
positive projection along magnetic north. Since ψ rotates the horizontal axes, with ψ having
the opposite value, the magnetometer readings have a negative projection along magnetic
north.

In order to resolve the discrepancy, we require that HE
1 ≥ 0, so the magnetometer’s

poles are aligned with magnetic north. Then using that fact in (24), we have

sgn(ψ) = −sgn(y1) (27)

from the second component of (23).
Now that the angles have been computed, we would like to see how errors in the mea-

surements GB and HB affect the measurements of the angles. (We were told that the
measurements in any of the components could be expected to have an error of around 1%.)
We proceed in order of increasing difficulty, beginning with θ.

Our expression for dθ can be determined easily from (14) as long as we assume that
|GB | is always equal to g. If we allow it to vary, then we would have to take differentials
of the magnitude of our vector as well. The process for doing that is outlined in section
6. However, for the rest of the manuscript, we assume that |GB | is always equal to g.
Physically, we are assuming that the accelerometer data we receive as input has already
been rescaled such that it has magnitude g, and it is the error in this scaled data that we
use in our analysis.
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Proceeding with this assumption, we note that since θ is a function only of GB
1 , we have

g sin θ = −GB
1

g cos θ dθ = −dGB
1

dθ = − dGB
1

g cos θ
(28)

dθ = − dGB
1

g
√

1 − (GB
1 /g)

2
= − dGB

1
√

g2 − (GB
1 )2

, (29)

where we can choose the positive square root since cos θ ≥ 0. Equation (28) is the easiest
to compute (since θ has already been calculated), while (29) has the advantage that it is
strictly in terms of the data given. Note that the highest sensitivity occurs when |θ| → π/2
(or equivalently, |GB

1 | = g, which means that the sensor is pointing straight up or straight
down).

Now let GB
1 = g − dGB

1 . (Note the differential has to be negative, since |GB| = g.)
Substituting this expression into (29) and expanding, we have

dθ = − (−dGB
1 )

√

g2 − (g − dGB
1 )2

=
dGB

1
√

2gdGB
1 + · · ·

= O

(

√

dGB
1

)

,

so errors in θ remain bounded as |θ| → π/2. This is consistent with our discussion in the
previous section, since the discontinuities were in the other angles.

φ is a function of GB
2 and GB

3 only, so we have

d(tan φ) =
∂

∂GB
2

(

GB
2

GB
3

)

dGB
2 +

∂

∂GB
3

(

GB
2

GB
3

)

dGB
3

sec2 φdφ =
dGB

2

GB
3

− GB
2 dG

B
3

(GB
3 )2

dφ = cos2 φ
GB

3 dG
B
2 −GB

2 dG
B
3

(GB
3 )2

(30)

dφ =
GB

3 dG
B
2 −GB

2 dG
B
3

(GB
3 )2[1 + (GB

2 /G
B
3 )2]

=
GB

3 dG
B
2 −GB

2 dG
B
3

(GB
2 )2 + (GB

3 )2
. (31)

In the limit that |θ| → π/2, GB
2 and GB

3 tend to zero. But the limit in (31) is dependent on
how these quantities tend to zero.

To see this, consider

lim
(GB

2 ,G
B
3 )→(0,0)

GB
3 dG

B
2 −GB

2 dG
B
3

(GB
2 )2 + (GB

3 )2
.

To study the dependence of this limit on the path, suppose first that GB
3 = mGB

2 for some
fixed value m. Then GB

2 cancels top and bottom, and

lim
(GB

2 ,G
B
3 )→(0,0)

GB
3 dG

B
2 −GB

2 dG
B
3

(GB
2 )2 + (GB

3 )2
= lim

GB
2→0

mdGB
2 − dGB

3

(1 +m2)GB
2

.
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Figure 5: Rotation interpreted in (v,Φ) context for (φ, θ, ψ) = (π/6, π/6, π/3): (a) v

(regular arrow) overlaid on Figure 1. (b) Looking down v.

Clearly this result is ill-defined for any m. Hence the error in (31) is not well-defined in
that limit, which is consistent with φ not having a well-defined value in that limit, either.

The calculation of the errors for ψ are hardest of all, since ψ is a function of H and G

(through φ and θ). If we use arguments analogous to those in (30) and ( 31), we obtain

dψ = − cos2 ψ
y2 dy1 − y1 dy2

y2
2

(32)

dψ = −y2 dy1 − y1 dy2

y2
1 + y2

2

, (33)

where

dy1 = cosφdHB
2 − sinφdHB

3 − (HB
2 sinφ+HB

3 cosφ) dφ , (34)

dy2 = cos θ dHB
1 + sin θ sinφdHB

2 + sin θ cosφdHB
3 + (HB

2 sinφ+HB
3 cosφ) cos θ dθ

+ (−HB
1 sin θ +HB

2 cos θ sinφ+HB
3 cos θ cosφ) dθ , (35)

and dθ and dφ are given in (28),(29) and (32), (33). Because of the contribution from dφ,
the same types of large errors will occur here as |θ| → π/2.

4 Using Quaternion Vectors

The change of reference frame from B to E is simply a matter of rotating the coordinate
frame an angle Φ ∈ [0, 2π) about some axis (represented by unit vector v). (The choice
of range will be discussed later. This is the notation in [1]; see Figure 5.) This is the
mathematical underpinning of the quaternion vector approach. There are several ways to
formulate it.
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We note that under the mapping (θ, φ, ψ) 7→ (ψ, θ, φ), the matrix in [2], equation (13)
is exactly TE←B . Therefore, we may quote this result:

TE←B =





v2
1(1 − cos Φ) + cos Φ v1v2(1 − cos Φ) − v3 sin Φ v1v3(1 − cos Φ) + v2 sin Φ

v1v2(1 − cos Φ) + v3 sin Φ v2
2(1 − cos Φ) + cos Φ v2v3(1 − cos Φ) − v1 sin Φ

v1v3(1 − cos Φ) − v2 sin Φ v2v3(1 − cos Φ) + v1 sin Φ v2
3(1 − cos Φ) + cos Φ



 ,

(36)

where

v2
1 + v2

2 + v2
3 = 1 . (37)

to ensure that the transition matrix is orthogonal.

Since

cos(2π − Φ) = cos Φ, sin(2π − Φ) = − sin Φ,

the matrix above is invariant under the mapping (v,Φ) 7→ (−v, 2π−Φ). This makes physical
sense, since in that case the rotations are the same.

The expression for v can be embedded in a quaternion vector q = (q0, q1, q2, q3) as
follows:

q =

(

cos
Φ

2
, v1 sin

Φ

2
, v2 sin

Φ

2
, v3 sin

Φ

2

)

, (38)

with q20 + q21 + q22 + q23 = 1 , (39)

which follows immediately from (37). Note that given a quaternion vector, we would use
the arccos function to determine Φ. Thus the range of the arccos is what motivates the
choice of Φ ∈ [0, π].

Since

cos
2π − Φ

2
= − cos

Φ

2
, sin

2π − Φ

2
= sin

Φ

2
,

we see that q 7→ −q under the mapping (v,Φ) 7→ (−v, 2π−Φ), which we know corresponds
to the same rotation. This double-covering of all possible rotations is what allows the
quaternions to be free of the type of discontinuities discussed in the previous section. In
particular, it is always possible to make the quaternions locally continuous (at the expense
of the q to −q non-uniqueness globally). That isn’t possible for the Euler angles, which
cannot be made locally continuous at φ = π/2.

However, note that the ordered pair (v,Φ) will not be continuous in the data. In
particular, if we restrict Φ to [0, π], there will be some rotation where Φ jumps from 0 to π
(or equivalently, v jumps to −v).

Alternatively, we may follow the analysis in [1], p. 155, in which case we have

TE←B =





q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23



 , (40)
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since we want the transpose of the matrix in (4.47′) in [1]. Keeping in mind the mapping
(φ,ψ) 7→ (ψ, φ) to match with that text, the expressions in (A.13xyz) on p. 604 become

q0 = cos
φ

2
cos

θ

2
cos

ψ

2
+ sin

φ

2
sin

θ

2
sin

ψ

2
, (41)

q1 = sin
φ

2
cos

θ

2
cos

ψ

2
− cos

φ

2
sin

θ

2
sin

ψ

2
, (42)

q2 = cos
φ

2
sin

θ

2
cos

ψ

2
+ sin

φ

2
cos

θ

2
sin

ψ

2
, (43)

q3 = − sin
φ

2
sin

θ

2
cos

ψ

2
+ cos

φ

2
cos

θ

2
sin

ψ

2
. (44)

To check our calculations, we checked the value of TE←B given by (8) and (40) for (φ, θ, ψ) =
(π/3, π/4, π/6).

Note that using the quaternion group does not remove the singularity if we decide to
move back into the Euler angles. In particular, we let θ = π/2 − ǫ (0 < ǫ ≪ 1) and note
that

sin
(π

4
− ǫ

2

)

∼ 1√
2

(

1 − ǫ

2

)

, cos
(π

4
− ǫ

2

)

∼ 1√
2

(

1 +
ǫ

2

)

. (45)

Then substituting (45) in (41)-(44), we have

q0 =
1√
2

[

cos
φ

2

(

1 +
ǫ

2

)

cos
ψ

2
+ sin

φ

2

(

1 − ǫ

2

)

sin
ψ

2

]

=
1√
2

cos
φ− ψ

2
+

1

2
√

2
cos

(

φ+ ψ

2

)

ǫ+O(ǫ2) , (46)

q1 =
1√
2

[

sin
φ

2

(

1 +
ǫ

2

)

cos
ψ

2
− cos

φ

2

(

1 − ǫ

2

)

sin
ψ

2

]

=
1√
2

sin
φ− ψ

2
+

1

2
√

2
sin

(

φ+ ψ

2

)

ǫ+O(ǫ2) , (47)

q2 =
1√
2

[

cos
φ

2

(

1 − ǫ

2

)

cos
ψ

2
+ sin

φ

2

(

1 +
ǫ

2

)

sin
ψ

2

]

=
1√
2

cos
φ− ψ

2
− 1

2
√

2
cos

(

φ+ ψ

2

)

ǫ+O(ǫ2) , (48)

q3 =
1√
2

[

− sin
φ

2

(

1 − ǫ

2

)

cos
ψ

2
+ cos

φ

2

(

1 +
ǫ

2

)

sin
ψ

2

]

= − 1√
2

sin
φ− ψ

2
+

1

2
√

2
sin

(

φ+ ψ

2

)

ǫ+O(ǫ2) . (49)

Therefore, in the limit that ǫ → 0, we may solve (46)-(49) only for the sum ψ − φ, just as
in the previous section. Hence taking a side trip and using the quaternion vectors, only to
go back to Euler angles for the customer, doesn’t gain us anything from the practical side.
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Moreover, if we combine (46)-(49), we obtain

q0 − q2 =
1√
2

cos

(

φ+ ψ

2

)

ǫ

q1 + q3 =
1√
2

sin

(

φ+ ψ

2

)

ǫ ,

from which we conclude that the left-hand side of each of the above goes to 0 as ǫ → 0.
Continuing to simplify, we have

(q0 − q2)
2 + (q1 + q3)

2 =
ǫ2

2

sin

(

φ+ ψ

2

)

=
q1 + q3

√

(q0 − q2)2 + (q1 + q3)2

φ+ ψ

2
= sin−1

(

q1 + q3
√

(q0 − q2)2 + (q1 + q3)2

)

, (50)

which is in the 0/0 indeterminate form as ǫ→ 0. In particular, it has the form

lim
(x,y)→(0,0)

x
√

x2 + y2
,

which is a well-known limit from multivariable calculus. In particular, it approaches a value
between −1 and 1 as (x, y) → (0, 0) transversely, but approaches no fixed value as (x, y)
spirals into (0, 0).

This problem can also be seen if we establish the inverse relationships to (41)-(44). This
is most easily done by identifying components of (40) with components of (9). In particular,
working with the last element of the first column, we have

2(q1q3 − q0q2) = − sin θ

θ = sin−1(2(q0q2 − q1q3)) . (51)

Working with the rest of the first column, we have

q20 + q21 − q22 − q23 = cos θ cosψ

2(q1q2 + q0q3) = cos θ sinψ

ψ = tan−1

(

2(q1q2 + q0q3)

q20 + q21 − q22 − q23

)

, sgn(ψ) = sgn(q1q2 + q0q3) , (52)

where the second equality comes from the fact that cos θ ≥ 0. Working with the rest of the
last row, we have

2(q2q3 + q0q1) = sinφ cos θ

q20 − q21 − q22 + q23 = cosφ cos θ

φ = tan−1

(

2(q2q3 + q0q1)

q20 − q21 − q22 + q23

)

, sgn(φ) = sgn(q2q3 + q0q1) , (53)

where the second equality comes from the fact that cos θ ≥ 0.
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5 Implementation and Error Analysis for the Quaternions

v and Φ are perhaps more useful for physical interpretation rather than for conversion to
the Euler angles. Thus, in practice we may work with the Goldstein formulation (40). To
begin, we define the ijth entry of TE←B by tij. Then we note from (40) that

t13 + t31 = 4q1q3 , (54)

t13 − t31 = 4q0q2 , (55)

t11 + t33 = 2(q20 − q22) , (56)

t11 − t33 = 2(q21 − q23) . (57)

Using the definitions above, some algebraic manipulation yields the following four quadratic
equations:

16(q20)
2 − 8(t11 + t33)q

2
0 − (t13 − t31)

2 = 0 , (58)

16(q21)
2 − 8(t11 − t33)q

2
1 − (t13 + t31)

2 = 0 , (59)

16(q22)
2 + 8(t11 + t33)q

2
2 − (t13 − t31)

2 = 0 , (60)

16(q23)
2 + 8(t11 − t33)q

2
3 − (t13 + t31)

2 = 0 . (61)

Using the quadratic formula and keeping in mind that q2i ≥ 0 we obtain the solutions:

q20 =
1

4

(

t11 + t33 +
√

(t11 + t33)2 + (t13 − t31)2
)

, (62)

q21 =
1

4

(

t11 − t33 +
√

(t11 − t33)2 + (t13 + t31)2
)

, (63)

q22 = −1

4

(

t11 + t33 −
√

(t11 + t33)2 + (t13 − t31)2
)

, (64)

q23 = −1

4

(

t11 − t33 −
√

(t11 − t33)2 + (t13 + t31)2
)

. (65)

However, these equations are useless for the implementation unless we have a relationship
between the tij and the G and H measurements. For t31 and t33, those relationships are
given directly by (12):

t31 =
GB

1

g
, (66)

t33 =
GB

3

g
. (67)

For the H calculation, we manipulate (18) and examine simply the first and second com-
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ponents:




HB
1

HB
2

HB
3



 = T TE←B





HE
1

0
HE

3



 =





t11H
E
1 + t31H

E
3

· · ·
t13H

E
1 + t33H

E
3





t11H
E
1 = HB

1 − GB
1H

E
3

g

t13H
E
1 = HB

3 − GB
3H

E
3

g

t11 =
gHB

1 −GB
1H

E
3

gHE
1

, (68)

t13 =
gHB

3 −GB
3H

E
3

gHE
1

. (69)

Note that the second coordinates of G and H do not factor directly into the equation;
rather, they are handled by the scaling conditions that |G| and |H| are constant no matter
the reference frame. These equations can also be derived directly from the transition matrix;
see section 6.

With (66)-(67) and (68)-(69) in hand, one can easily solve any of (58)-(61) for one of the
q2i . In finishing the solution process for the remaining quantities qi, care must be taken to
ensure that the algebraic signs of the components of the quaternion are consistently chosen.
In particular, we note from our previous discussion that both q and −q correspond to the
same rotation.

Once q0 has been determined, then (55) (which is then a linear equation) can be used
to determine the unique value of q2. Unfortunately, we cannot just solve (63) for q1 and
proceed, because then we couldn’t be sure that our signs are consistent. Therefore, we now
do introduce G2 directly by examining the second component of (12):

t32 =
GB

2

g
. (70)

Then combining (66),(67) and (70) using (40), we have

q2t31 − q1t32 = q2[2q2(q1q3 − q0q2)] − 2q1[q2q3 + q0q1]

q2G
B
1 − q1G

B
2

g
= −2q0(q

2
2 + q21) = q0(q

2
0 − q21 − q22 + q23 − 1) = q0(t33 − 1)

q2G
B
1 − q1G

B
2 = q0(G

B
3 − g). (71)

q1 can then be determined from (71). Finally once q0, q1, and q2 are determined, the unique
value of q3 can be determined from (54).

To estimate errors in the values of the components of the quaternion as functions of the
input data (GB,HB), we must first compute the partial derivatives of the tij with respect
to the data. Using (66), (67) and (68)-(69), we obtain

∂t3i

∂GB
j

=
δij
g
,

∂t3i

∂HB
j

= 0,
∂t1i

∂GB
j

= −δijH
E
3

gHE
1

,
∂t1i

∂HB
j

=
δij

HE
1

, i, j = 1, 3, (72)
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where δij is the Kronecker delta function. Note that none of our expressions depend on the
measurements in the B2 direction; this is because these measurements are constrained by
the fact that |G| and |H| must be constant.

To complete the error analysis of q0, we now compute the differential (58) with respect
to the data. (The computations of the other qj are similar, especially due to the similar
underlying structure of all of (58)-(61)). Taking the differential, we have

64q30 dq0 − 8
[

(dt11 + dt33)q
2
0 + 2(t11 + t33)q0 dq0

]

− 2(t13 − t31)(dt13 − dt31) = 0

8q0[4q
2
0 − (t11 + t33)] dq0 = 4(dt11 + dt33)q

2
0 + (t13 − t31)(dt13 − dt31)

dq0 =
4(dt11 + dt33)q

2
0 + (t13 − t31)(dt13 − dt31)

16q0[2q
2
0 − (t11 + t33)]

, (73)

where

dtij =
∂tij

∂GB
1

dGB
1 +

∂tij

∂GB
3

dGB
3 +

∂tij

∂HB
1

dHB
1 +

∂tij

∂HB
1

dHB
3 (74)

can be determined from (72).

6 Computing the Transition Matrix Directly

We can also use the data immediately to get the transition matrix TB←E . Recall that from
the definition of the transition matrix, the columns of TB←E are given by the B-coordinates
of the E vectors. But we have from (11) that

TE←B

GB

g
= TE←BĜB =





0
0
1



 , (75)

where the hat notation is used to indicate a unit vector. So the third column of TB←E must

be ĜB. (This can also be verified componentwise using (13) and (8).)
Similarly, proceeding in a purely algebraic way, we have from (18)

TE←B

HB

HE
1

=





1
0

HE
3 /H

E
1





TE←B

(

HB

HE
1

− HE
3 ĜB

HE
1

)

= TE←BĤB
p =





1
0
0



 , (76)

so the vector in parentheses must be the first column. However, the HE
j are a priori

unknown. Therefore, we move to a geometric context. We see from (76) that we need to
remove any component of HB in the GB direction:

HB
p = HB − (HB · ĜB)ĜB, (77)

where the subscript “p” stands for “projection”. Note that
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1. We don’t need to normalize the ĜB term because ĜB is already a unit vector.

2. From (77) and (76), we see that

HE
3 = HB · ĜB, (78)

HE
1 = |HB − (HB · ĜB)ĜB|. (79)

Then we must normalize the result. Thus we have

ĤB
p =

HB
p

|HB
p |
. (80)

To calculate the second column of the transition matrix TB←E we note that since it
is orthogonal, the columns must be orthonormal. Therefore, the second column can be
calculated as the curl of the first two. In particular, we have that

TB←E

(

ĜB × ĤB
p

)

=





0
0
1



×





1
0
0



 =





0
1
0



 (81)

so we have the second column, and hence a representation for the full matrix:

TB←E=
(

ĤB
p , Ĝ

B × ĤB
p , Ĝ

B
)

. (82)

This expression can be simplified somewhat (since the ĜB × ĜB part of the second column
will vanish), but we do not do so here. Note that we have chosen ĜB × ĤB

p (rather than

ĤB
p × ĜB) to get a right-handed coordinate frame.
Once TB←E has been calculated, it is a simple matter to obtain v and Φ, at least up to a

minus sign error. Since TB←E is an orthogonal matrix, it must have a real unit eigenvector
with eigenvalue 1. This eigenvector must be v, since v is invariant under the rotation. The
other two eigenvalues must be of the form e±iΦ, since they describe the rotation about the
axis.

The only ambiguity with this system is making sure that you have the right (v,Φ)
pair and that you haven’t accidentally negated one of them. But this is easily checked
by substituting the pair into (36) and make sure that the transition matrix TE←B is the
transpose of the matrix in (82).

Alternatively, we may construct v directly from the transition matrix. In particular, we
may calculate Φ as before or by using the fact that

tr TB←E= 1 + eiΦ + e−iΦ = 1 + 2 cos Φ, (83)

which will give us a definite value of Φ, since at this stage we may restrict ourselves to a
quadrant.

To construct v, we first consider a unit vector z 6= cv for any constant c, and then
construct

z⊥ = ( TE←B − TB←E)z. (84)
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α

v

z

Φ

−Φ

T
E←B

T
z

T
E←B

z

z⊥ points this way

Figure 6: Visualization of w under rotation.

We first note that

z⊥ · v = ( TE←B − TB←E)z · v = z · ( TE←B − TB←E)Tv = z · ( TB←E − TE←B)v = z · (v − v) = 0,

where we have used the fact that v is invariant under the rotation. So z⊥ ⊥ v. Moreover,
we have that

z⊥ · z = ( TE←B − TB←E)z · z = TE←Bz · z − z · TB←E
Tz = TE←Bz · z− TE←Bz · z = 0,

so z⊥ ⊥ z as well. Thus z⊥ is a multiple of v × z.

To find the multiple, we note that the length of z⊥ is given by

|z⊥|2 =
∣

∣ TE←Bz
∣

∣

2
+
∣

∣ TB←Ez
∣

∣

2 − 2( TE←Bz · TE←B
Tz) = 2

[

1 − TE←Bz · TE←B
T z
]

. (85)

To calculate the dot product, we next examine Figure 6. We first take the dot product
of the projections of TE←B

Tz and TE←Bz onto the plane perpendicular to v:

[

TE←B
Tz− ( TE←B

Tz · v)v
]

·
[

TE←Bz− ( TE←Bz · v)v
]

=
∣

∣ T TE←Bz −
(

T TE←Bz · v
)∣

∣

∣

∣ TE←Bz −
(

TE←Bz · v
)

v
∣

∣ cos 2Φ

TE←B
Tz · TE←Bz− ( TE←B

Tz · v)(v · TE←B
Tz) − ( TE←Bz · v)( TE←B

Tz · v)

+ ( TE←B
Tz · v)( TE←Bz · v)(v · v) = sin2 α cos 2Φ
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TE←B
Tz · TE←Bz − ( TE←Bz · v)( TE←B

Tz · v) = sin2 α(2 cos2 Φ − 1)

− TE←B
Tz · TE←Bz = −( TE←Bv · z)( TE←B

Tv · z) − sin2 α(2 cos2 Φ − 1)

1 − TE←Bz · TE←B
Tz = 1 − (v · z)2 − sin2 α(2 cos2 Φ − 1)

1 − TE←Bz · TE←B
Tz = 1 − (|v||z| cos α)2 − sin2 α(2 cos2 Φ − 1)

2
[

1 − TE←Bz · TE←B
Tz
]

= 2 · 2
[

sin2 α(1 − cos2 Φ)
]

,

where we have used the fact that v and z are unit vectors and v is unaffected by the
rotation. Then substituting this result into (85), we obtain

|z⊥| = 2 sinα sinΦ, (86)

where we have used the diagram to deduce which sign of sin Φ to use.

Then using the definition of the cross product and its matrix representation, we have

z⊥ = 2(v × z) sin Φ

1

2 sin Φ





0 t12 − t21 t13 − t31
t21 − t12 0 t23 − t32
t31 − t13 t32 − t23 0



 z =





0 −v3 v2
v3 0 −v1
−v2 v1 0



 z

v =
1

2 sin Φ





t32 − t23
t13 − t31
t21 − t12



 , (87)

which then gives an explicit expression for v in terms of the tij.

To perform the error analysis, we first note the trivial facts that

∂ĜB

∂GBi
=

ei

g
,

∂ĜB

∂HB
i

= 0,
∂ĤB

∂GBi
= 0,

∂ĤB

∂HB
i

=
ei

|HB| , (88)

where ei is the ith standard basis vector. Note that for any variable y,

d

dy

(

1

|HB
p |

)

=
d

dy

(

1

(HB
p · HB

p )1/2

)

= − 1

2(HB
p ·HB

p )3/2
d(HB

p ·HB
p )

dy

= − 1

2|HB
p |3

(

2HB
p ·

dHB
p

dy

)

= − 1

|HB
p |2

(

ĤB
p ·

dHB
p

dy

)

d

dy

(

HB
p

|HB
p |

)

=
1

|HB
p |
dHB

p

dy
+ HB

p

d

dy

(

1

|HB
p |

)

dĤB
p

dy
=

1

|HB
p |
dHB

p

dy
−

ĤB
p

|HB
p |

(

ĤB
p ·

dHB
p

dy

)

. (89)
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Now for the variables under consideration, we have

∂HB
p

∂GB
i

= 0 −
[(

0 · ĜB + HB · ei

g

)

ĜB +
(

HB · ĜB
) ei

g

]

= −H
B
i ĜB +HE

3 ei

g
, (90)

∂HB
p

∂HB
i

= ei −
[(

ei · ĜB + HB · 0
)

ĜB +
(

HB · ĜB
)

0
]

= ei − ĜB
i Ĝ

B, (91)

where he have used (78) and (88). Then taking the dot products in (89), we obtain

ĤB
p ·

∂HB
p

∂GB
i

= ĤB
p ·
(

−H
B
i ĜB +HE

3 ei

g

)

= −
HE

3 (ĤB
p )i

g
, (92)

ĤB
p ·

∂HB
p

∂HB
i

= ĤB
p · (ei − ĜB

i Ĝ
B) = (ĤB

p )i, (93)

where we have used the fact that HB
p and GB are orthogonal.

Substituting (90),(91) and (92),(93) into (89), we obtain

∂ĤB
p

∂GB
i

=
1

|HB
p |

[

−H
B
i ĜB +HE

3 ei

g

]

−
ĤB

p

|HB
p |

(

−
HE

3 (ĤB
p )i

g

)

= −
HB
i ĜB +HE

3 ei −HE
3 (ĤB

p )iĤ
B
p

g|HB
p |

,

= −H
E
3 zi

g
− HB

i ĜB

g|HB
p |
, zi =

ei − (ĤB
p )iĤ

B
p

|HB
p |

(94)

∂ĤB
p

∂HB
i

=
ei − ĜB

i Ĝ
B

|HB
p |

−
ĤB

p (ĤB
p )i

|HB
p |

= zi −
ĜB
i Ĝ

B

|HB
p |

, (95)

Lastly, to determine the error in the middle column, we compute

∂(ĜB × ĤB
p )

∂GB
i

=
∂ĜB

∂GB
i

× ĤB
p + ĜB ×

∂ĤB
p

∂GB
i

=
ei

g
× ĤB

p + ĜB ×
[

−H
E
3 zi

g
− HB

i ĜB

g|HB
p |

]

=
1

g

[

ei × ĤB
p −HE

3 (ĜB × zi)
]

,

∂(ĜB × ĤB
p )

∂HB
i

=
∂ĜB

∂HB
i

× ĤB
p + ĜB ×

∂ĤB
p

∂HB
i

= ĜB ×
(

zi −
ĜB
i Ĝ

B

|HB
p |

)

= ĜB × zi, (96)

Then with these expressions, we see that the error in the transition matrix TB←E is given
by

dTB←E =
3
∑

i=1

(

∂ĤB
p

∂GB
i

,
∂(ĜB × ĤB

p )

∂GB
i

,
ei

g

)

dGB
i +

(

∂ĤB
p

∂HB
i

,
∂(ĜB × ĤB

p )

∂HB
i

,0

)

dHB
i . (97)
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Note that the transition matrix is smooth in the data, which is correct since the transition
matrix is simply made up of numbers with no angles attached.

7 Matlab Implementation

The group has implemented MATLAB programs that test errors due to measurement noise
for two of the algorithms in the previous sections.

These programs work with four representations of a rotation:

1. The transition matrix TB←E .

2. v and Φ from the quaternion description.

3. The Euler angles.

4. q from the quaternion description.

We have written subroutines that convert among these representations by direct com-
putation:

1. Given TB←E , find v and Φ using the procedure described in section 6.

2. Given TB←E , find (φ, θ, ψ) directly using (9).

3. Given v and Φ, compute TB←E directly using (36).

4. Given v and Φ, compute q using (38).

5. Given (φ, θ, ψ), compute TB←E directly using (9).

6. Given (φ, θ, ψ), compute q directly using (41)-(44).

7. Given q, compute TB←E directly using (40).

8. Given q, compute v and Φ using manipulations of (38).

9. Given q, compute (φ, θ, ψ) using (51)-(53).

We have also written subroutines that use the data inputs GB and HB to compute
rotations:

1. Given GB and HB, compute TB←E using (82).

2. Given GB and HB, compute q using Newton’s method on the system of nonlinear
equations derived by substituting TB←E as defined in (40) into (11) and (18).

3. Given GB and HB, compute (φ, θ, ψ) using (14), (21), and (24)-(27).
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To test errors due to measurement noise, we wrote a simulator that generates the data
inputs GB and HB for a given set of Euler angles, adds random noise, and then uses the
subroutines above to try to recover the Euler angles. In the following examples, GB and
HB have measurement noise of 1%. In each case, ψ was fixed at π/4 and the other Euler
angles (θ, φ) vary over their full range.

It is possible for spurious errors to arise from these angles approaching the end of their
ranges. For example, if φ was near 2π and a perturbation in the data would send it to
2π + ǫ, that angle would be mapped to ǫ, which would (formally) cause a very large error
in φ.

To eliminate such spurious results, the errors were calculated as follows. Given a set
of Euler angles (θ, φ), the corresponding GB and HB values were computed using (13) and
(23). Then the transition matrix TB←E was computed using (82). Once the data was
perturbed, the perturbed transition matrix TB∆←E was computed, again using (82).

Given these two matrices, the differential angles (dφ, dθ, dψ) are then simply those angles
which rotate from the B to B∆ frames. Hence they be obtained from the transition matrix

TB∆←B = TB∆←E T TB←E .

Then we use subroutines 2, above, to convert from the transition matrix to the error angles.
Since the transition matrix is smooth in the data and isn’t affected by the ranges, the
differential angles calculated will hence always be small.

There are several ways that one can compute the perturbed transition matrix. First,
one can solve for the angles directly as described in method #3 above. Once the angles
have been computed, it is a simple matter to substitute into (9) to obtain the perturbed
transition matrix. The errors obtained by such a procedure are shown in Figure 7. Note
that each error is comparable in size to the perturbation of the data. Note also that dψ is
somewhat larger than the others, because ψ is dependent on both GB and HB, while the
other two angles are dependent only on GB.

Alternatively, given the perturbed data, one can compute the perturbed transition ma-
trix directly as described in method #1 above. The errors obtained by such a procedure
are shown in Figure 8. Given the same random data set, the two methods produce results
that are identical down to the floating-point precision. The only reason why Figures 7 and
8 differ is because a different random data set was used for each.

8 Using the Gyroscope

The accelerometer and magnetometer measurements are used to determine the Euler angles
at any time t. However, the time rate of change of each of these quantities is also important.
Because of various errors associated with computation, it is better to have stand-alone
measurements of these, rather than taking differentials of the G and H data. Therefore,
we compute these quantities from qyroscope data, which yields the quantity

~ω =





ω1

ω2

ω3



 , (98)
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Figure 7: Errors in angle measurements, angles calculated using method #3.

where ωi is the angular velocity about axis i in the body frame. Thus this information needs
to be converted into (φ̇, θ̇, ψ̇), where the dot indicates differentiation with respect to t.

Since φ is defined as rotation about B1, it contributes directly to ω without changing
coordinates. Therefore, we write

~ωφ =





φ̇
0
0



 . (99)

Since ω2 is measured in the B frame and θ̇ is measured in the B′ frame, we must apply the
proper transformation matrix to relate the two quantities. Thus we have

~ωθ = TB←B′





0

θ̇
0



 = Eφ





0

θ̇
0



 =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ









0

θ̇
0



 . (100)

Similarly, since ω3 is measured in the B frame and ψ̇ is measured in the B′′ frame, we must
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Figure 8: Errors in angle measurements, angles calculated using method #1.

apply the proper transformation matrix to relate the two quantities:

~ωψ = TB←B′′





0
0

ψ̇



 = EφEθ





0
0

ψ̇



 =





cos θ 0 − sin θ
sin θ sinφ cosφ cos θ sinφ
sin θ cosφ − sinφ cos θ cosφ









0
0

ψ̇



 ,

(101)
where we have used the transpose of (22).

Then adding these quantities to obtain the true gyroscopic data, we have

~ω = ~ωφ + ~ωθ + ~ωψ = WB←E





φ̇

θ̇

ψ̇



 , (102)

WB←E =





1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ



 , (103)

where WB←E is the transition matrix from E to B for the angular velocities. Here we have
used the form of the vectors in (99)-(101) to note that the first column of WB←E is the first
column of the (identity) matrix in (99), the second column is the second column in (100),
and the third column is the third column in (101).
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Unfortunately, WB←E is not orthogonal, so it cannot be inverted just by taking the
transpose. Moreover, WB←E is not even invertible if |θ| = π/2. In this case (which we
already know to be problematic), the third column is a multiple of the first.

Nevertheless, for |θ| 6= π/2, some work will provide the inverse matrix

W−1
B←E = WE←B =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ



 , (104)

so




φ̇

θ̇

ψ̇



 = WE←B~ω. (105)

Note that as promised, the inverse doesn’t exist for |θ| = π/2.

Since (105) is a linear system, the error analysis is relatively straightforward. First,
similar to the argument presented at the beginning of the section, we do not integrate or
otherwise use the gyroscope data to compute the Euler angles. Thus we may consider
(φ̇, θ̇, ψ̇) to be independent of (φ, θ, ψ) in the following error analysis. Then taking the
derivatives, we have





φ̇

θ̇

ψ̇



 =
∂ WE←B

∂φ
~ω dφ+

∂ WE←B

∂θ
~ω dθ + WE←B d~ω, (106)

∂ WE←B

∂φ
=





0 cosφ tan θ − sinφ tan θ
0 − sinφ − cosφ
0 cosφ sec θ − sinφ sec θ



 (107)

∂ WE←B

∂θ
=





0 sinφ sec2 θ cosφ sec2 θ
0 0 0
0 sinφ tan θ sec θ cosφ tan θ sec θ



 , (108)

and the errors in the angles are as described in (28) and (30).

We continue by deriving the evolution equations of the quaternions from the gyroscopic
data. First, consider the basis vector B1. In the B coordinate frame, its coordinates are
(1, 0, 0)T , the coordinates of E1 in the standard basis. In other words,

B1 = TE←BE1.

Since this is true for each vector, we have (by the properties of the rotation matrix) that

Ei = TB←EBi, i = 1, 2, 3. (109)

Taking the time derivative of (109) and realizing that the Earth frame never changes, we
have

0 = ṪB←EBi + TB←EḂi. (110)
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But the body frame moves as a result of the angular velocities, so we have

Ḃi = ~ω × Bi. (111)

Substituting (111) into (110), we have

ṪB←EBi + TB←E(~ω × Bi) = 0

( ṪE←B
T + TE←B

TΩ)Bi = 0, Ω =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





ṪE←B
T = − TE←B

TΩ

ṪE←B = Ω TE←B (112)

T TE←B ṪE←B = Ω, (113)

where in deriving (112) we have used the fact that the equation above must be true for all
Bi. Here Ω is that matrix which, when multiplied by Bi, always yields the cross product.

Note that since Ω is antisymmetric, (113) is really only three independent equations for
the four unknown components of q̇. (The fourth is provided by the derivative of (39).) We
note from (54)-(57) that

ṫ13 + ṫ31 = 4(q̇1q3 + q1q̇3),
ṫ13 − ṫ31 = 4(q̇0q2 + q0q̇2),
ṫ11 + ṫ33 = 4(q0q̇0 − q2q̇2),
ṫ11 − ṫ33 = 4(q1q̇1 − q3q̇3).

from which we obtain

q3(ṫ13 + ṫ31) + q1(ṫ11 − ṫ33) = 4q̇1(q
2
1 + q23), (114)

q0(ṫ13 − ṫ31) − q2(ṫ11 + ṫ33) = 4q̇2(q
2
0 + q22), (115)

q1(ṫ13 + ṫ31) − q3(ṫ11 − ṫ33) = 4q̇3(q
2
1 + q23), (116)

where we have reduced down to three equations for reasons which will become clear later.
For simplicity, we work with (112), which becomes





ṫ11 ṫ12 ṫ13
ṫ21 ṫ22 ṫ23
ṫ31 ṫ32 ṫ33



 =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0









t11 t12 t13
t21 t22 t23
t31 t32 t33





ṫ11 = −t21ω3 + t31ω2, (117)

ṫ13 = −t23ω3 + t33ω2, (118)

ṫ31 = −t11ω2 + t21ω1, (119)

ṫ33 = −t13ω2 + t23ω1. (120)
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Substituting these results into (114), we have

4q̇1(q
2
1 + q23) = q3(−t11ω2 + t21ω1 − t23ω3 + t33ω2) + q1(−t21ω3 + t31ω2 + t13ω2 − t23ω1)

q̇1 =
ω1(q3t21 − q1t23) + ω2[q3(t33 − t11) + q1(t31 + t13)] − ω3(q3t23 + q1t21)

4(q21 + q23)

=
ω1[2q0(q

2
1 + q23)] + ω2[2q3(q

2
1 − q23) + q1(4q1q3)] − ω3[−2q2(q

2
1 + q23)]

4(q21 + q23)

=
ω1q0 + ω2q3 − ω3q2

2
, (121)

where we have used (40). Using the fact that (q1, q3) 7→ (−q3, q1) in the left-hand sides of
(114) and (116), we see that (116) becomes

q̇3 =
ω1(q1t21 + q3t23) + ω2[q1(t33 − t11) − q3(t31 + t13)] − ω3(q1t23 − q3t21)

4(q21 + q23)

=
ω1[2q2(q

2
1 + q23)] + ω2[−2q1(q

2
1 − q23) − q3(4q1q3)] − ω3[−2q0(q

2
1 + q23)]

4(q21 + q23)

=
ω1q2 − ω2q1 + ω3q0

2
. (122)

Finally, we substitute our results into (115), which yields

4q̇2(q
2
0 + q22) = q0(−t23ω3 + t33ω2 + t11ω2 − t21ω1) − q2(−t21ω3 + t31ω2 − t13ω2 + t23ω1)

q̇2 =
ω1(−q0t21 − q2t23) + ω2[q0(t33 + t11) − q2(t31 − t13)] + ω3(−q0t23 + q2t21)

4(q20 + q22)

=
ω1[−2q3(q

2
0 + q22)] + ω2[2q0(q

2
0 − q22) − q2(−4q0q2)] + ω3[2q1(q

2
0 + q22)]

4(q20 + q22)

=
−ω1q3 + ω2q0 + ω3q1

2
. (123)

With these equations in place, q̇0 can be derived from (39):

2q0q̇0 + 2q1q̇1 + 2q2q̇2 + 2q3q̇3 = 0

q̇0 = −(q1q̇1 + q2q̇2 + q3q̇3)

q0
. (124)

The workshop concluded before we had time to derive an error analysis for this case.

9 Conclusions and Further Research

In this work, we have analyzed the relationship between GB, HB, and the position of a
sensor robot arm. We analyzed the relationship by interpreting the movement in terms
of transition matrices, Euler angles, quaternions, and rotations about an axis. We also
produced an error analysis of the dependent variables on the data.
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Since transition matrices and quaternions are simply made up of scalars, they were
found to vary smoothly with the data. On the other hand, once we introduced an angle
into the analysis, we immediately ran into several problems.

The first (and perhaps most important) conclusion is that when reviewing the literature
on Euler angles, it is critical to understand the “convention” (i.e., the axes and order of
rotation) used. This choice will affect the computation of all the parameters in the problem,
as well as the ranges of the angles.

In the Euler-angle formulation, an indeterminacy arises when |θ| = π/2. In that case
(which occurs when B1 is aligned either straight up or straight down), only two rotations
are necessary, so only the difference between ψ and φ is measurable. Moreover, in either
the Euler-angle or vector-angle descriptions, each angle becomes discontinuous in the data
as it nears the end of its range. In contrast, the transition matrices and quaternions (which
are based upon trigonometric functions of the angles) vary smoothly with the data.

In short: The rotation (as represented by q and T ) is continuous in the data. The
man-made convention of choosing angle ranges for ψ, θ, φ, and Φ makes these variables
discontinuous in the data.

The immediate conclusion from this fact is that quaternions or the rotation matrix is
the best way to handle the data. Of the two, using the rotation matrix directly is probably
the fastest due to the simplicity with which one can calculate TB←Efrom the data using (82).

Therefore, one marked improvement could be obtained by implementing an algorithm to
interpret the movement of the arm based upon T alone. Though TIAX could implement this
as a downstream solution, a major problem is that certain customers, in order to integrate
the sensor results into their own systems, require that the Euler angles be output.

We also analyzed the relationship between ~ω and the movement of a sensor robot arm.
We analyzed the relationship by interpreting the movement in terms of derivatives of the
Euler angles and quaternions. (Interpretations in terms of transition matrices and rotations
about an axis, though beyond the scope of this manuscript, should follow naturally.)

We did complete an error analysis of the gyroscopic data in the Euler-angle formulation
and found (not surprisingly) that the variation of (φ̇, θ̇, ψ̇) with errors in ~ω was arbitrarily
large as |θ| → π/2. We did not have enough time to complete an error analysis of q̇ with
the data ~ω. Though our experience leads us to believe that the errors will be smooth, this
is a fruitful area for further research.

The measurement errors analyzed in this work vary with each signal, the frequency
of which is 60 Hz. In addition, there will also be calibration errors associated with these
measurements. We list them below, in addition with some strategies for addressing them:

1. Calibration errors in translating the actual data results from the sensor into G, H, and
~ω in the sensor frame. One source of these errors is temperature variation. However,
these variations will occur on a much longer time scale. If the robot is working in an
environment with large temperature variations, periodic (twice-daily?) calibrations
may be appropriate, if the duration of such calibrations can be made acceptable to
consumers.

Another source of such calibration error may be due to vibrations or large forces
(accelerations) in the robot arm. However, this calibration is proprietary to TIAX,
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so we have no further information on the process.

2. Calibration errors in transforming the sensor frame to an orthogonal coordinate sys-
tem. Again, this calibration is proprietary, so it is unclear how much vibrations or
other accelerations may affect the orientations of the sensors. If there is little effect,
then again an occasional calibration should be appropriate.

3. Calibration errors in aligning the orthogonal sensor frame with the body frame. Since
we have no guarantee that (with errors as described in #2) the sensor frame will
always be transformed in to the same orthogonal frame, this is a separate issue that
must be considered. However, since this is just a rotation between two orthogonal
frames, the mathematical analysis should be quite similar to the sort described in this
report.

4. Calibration errors in aligning the Earth frame (as interpreted by the alignment soft-
ware) to the actual Earth coordinate system. Note that neither of these frames is
moving in relationship to one another. Thus, one should be able to eliminate such
errors by doing a simple displacement calculation, rather than working from an abso-
lute zero. Any drift that might occur (perhaps due to vibrations induced during the
robot’s work cycle) will occur on a very slow time scale. Again, a periodic calibration
may be necessary.

5. Errors associated with scaling |G| to have length g. These can be addressed directly
using techniques similar to those described in section 6; the group just ran out of time
before analyzing them.

Nomenclature

If the same letter appears both in bold and plain text, the variables in plain text are
components of the vector which appears in bold. The equation number where a particular
quantity first appears is listed, if appropriate.

B: unit vector describing orientation of body frame.

E: unit vector describing orientation of earth frame.

E: intermediate rotation matrix (4).

e: standard basis vector (88).

G: vector of accelerometer measurements.

g: acceleration of gravity (10).

H: vector of magnetometer measurements.

i: indexing variable.
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j: indexing variable.

q: quaternion vector (38).

TE←B : transition matrix for coordinates from body frame to earth frame (1).

t: element of TE←B (12).

v: unit vector corresponding to axis of rotation.

WB←E : transition matrix for angular velocities from Earth frame to body frame (103).

x: dummy variable.

y: dummy variable (25),(26).

z: intermediate vector, variously defined (94).

Z: the integers.

δij: Kronecker delta function (72).

ǫ: small parameter, variously defined (45).

θ: pitch angle of rotation about B′2.

Φ: combined angle of rotation.

φ: roll angle of rotation about B1.

ψ: heading (yaw) angle of rotation about B′′3.

Ω: matrix representing ~ω× (112).

~ω: vector of gyroscope measurements (98).

Other Notation

B: as a superscript, used to indicate the body frame.

E: as a superscript, used to indicate the earth frame.

n ∈ Z: as a subscript, used to indicate a direction in a reference frame or as an index for a
dummy variable (25).

p: as a subscript on HB, used to indicate a projection (76).

⊥: as a subscript, used to denote orthogonality (84).

φ: as a subscript on E, used to refer to the φ rotation (4).

ψ: as a subscript on E, used to refer to the ψ rotation (6).
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θ: as a subscript on E, used to refer to the ψ rotation (5).

˙ : used to indicate differentiation with respect to t.

ˆ: used to indicate a unit vector (75).

′: used to indicate first intermediate frame.

′′: used to indicate second intermediate frame.
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